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Abstract
Conformally invariant curves that appear at critical points in two-dimensional
statistical mechanics systems and their fractal geometry have received a lot of
attention in recent years. On the one hand, Schramm (2000 Israel J. Math.
118 221 (Preprint math.PR/9904022)) has invented a new rigorous as well
as practical calculational approach to critical curves, based on a beautiful
unification of conformal maps and stochastic processes, and by now known
as Schramm–Loewner evolution (SLE). On the other hand, Duplantier (2000
Phys. Rev. Lett. 84 1363; Fractal Geometry and Applications: A Jubilee of
Benoit Mandelbrot: Part 2 (Proc. Symp. Pure Math. vol 72) (Providence, RI:
American Mathematical Society) p 365 (Preprint math-ph/0303034)) has
applied boundary quantum gravity methods to calculate exact multifractal
exponents associated with critical curves. In the first part of this paper, I
provide a pedagogical introduction to SLE. I present mathematical facts from
the theory of conformal maps and stochastic processes related to SLE. Then
I review basic properties of SLE and provide practical derivation of various
interesting quantities related to critical curves, including fractal dimensions
and crossing probabilities. The second part of the paper is devoted to a way of
describing critical curves using boundary conformal field theory (CFT) in the
so-called Coulomb gas formalism. This description provides an alternative (to
quantum gravity) way of obtaining the multifractal spectrum of critical curves
using only traditional methods of CFT based on free bosonic fields.

PACS numbers: 02.30.Fn, 02.50.Ey, 05.50.+q, 11.25.Hf
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1. Introduction

The area of two-dimensional (2D) critical phenomena has enjoyed a recent breakthrough. A
radically new development, referred to as the Schramm– (or stochastic) Loewner evolution
(SLE) [1], has given new tools to study criticality in 2D, and also provided us with a new
interpretation of the traditional conformal field theory (CFT) and Coulomb gas approaches.
Examples of systems described by SLE include familiar statistical models—Ising, Potts, O(n)

model, polymers—as well as ‘geometric’ critical phenomena such as percolation, self-avoiding
random walks, spanning trees and others. The new description focuses directly on non-local
structures that characterize a given system, be it a boundary of an Ising or percolation cluster
or loops in the O(n) model. This description uses the fact that all these non-local objects
become random curves at a critical point and may be precisely characterized by stochastic
dynamics of certain conformal maps.
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The SLE approach is complementary to that of CFT, and the new description has not only
reproduced many of the known results from previous approaches, but also gave new results,
either conjectured before or unknown altogether. It appears that questions that are difficult to
pose and/or answer within CFT are easy and natural in the SLE framework and vice versa.

The SLE approach is very intuitive and transparent using traditional paradigms of
stochastic processes—Brownian motion, diffusion and the like. In spite of all this, SLE
is not yet widely known in the physics community and deserves more attention and study. One
goal of this paper is to give a brief introduction to this burgeoning field.

Another important recent advance (actually preceding the invention of SLE) in the study
of critical 2D systems has been the calculation of exact multifractal spectrum of critical clusters
by Duplantier [2, 3], who has ingeniously applied methods of boundary quantum gravity (the
KPZ formula of [4]). The second goal of this paper is to review Duplantier’s results and
rederive them using traditional methods of CFT. To this end, I connect SLE with CFT in the
so-called Coulomb gas formulation. In this formulation, the curves produced by SLE can be
viewed as level lines of a height function (bosonic field) that fluctuates and is described by a
simple Gaussain action with some extra terms. This formalism allows us to perform a very
transparent translation between SLE and CFT, and between geometric object (curves) and
operators and states in the CFT.

Many reviews of SLE and its applications in physics already exist. They are listed in
the reference section in the end. References [5–10] are geared for physicists and [11–18]
for mathematicians. My presentation is for physicists who may want to read original
mathematical papers on SLE. Therefore, I use mathematical language and notation, explaining
and illustrating all important terms and ideas with plausible arguments and simple calculations.
The presentation is not rigorous, but I try to formulate all important statements precisely.
Another feature of this paper (mainly in its second part) is that I assume that readers are
familiar with statistical mechanics and methods of CFT, some of which are briefly summarized
in appropriate sections (see [19] for a thorough introduction).

The structure of the paper is as follows. In section 2, I first describe microscopic origins
of critical curves, as they appear in models of statistical mechanics defined on 2D lattices.
Then I introduce various quantities of interest related to critical curves.

The next section, section 3, presents some properties of conformal maps, especially those
that map the complement of a curve in the upper half plane (UHP) to the UHP. These maps can
be obtained as solutions of a simple differential equation introduced by Loewner. I provide a
heuristic derivation of this equation and give a few examples of explicit solutions.

In section 4, I introduce SLE and describe its basic properties (some of which are actually
derived later) and relation to particular statistical mechanics models.

Section 5 provides a quick introduction to tools of stochastic analysis, the main ones being
Itô formula and its consequences.

Basic properties of SLE, including its phases, locality and restriction, are considered and
derived using stochastic calculus in section 6.

In section 7, I give several examples of non-trivial calculations within SLE, whose results
provide probabilistic and geometric properties of critical curves. This section closes the part
of the paper devoted to SLE.

The remaining sections, based on [20, 21], develop an alternative way of analysing critical
curves based on CFT methods in the Coulomb gas formalism.

The name ‘Coulomb gas’ refers to a group of techniques that have been very fruitfully used
to obtain exact critical exponents of various lattice models of statistical mechanics (see [22])
for a review). A similar method was introduced by Dotsenko and Fateev [23] to reproduce
correlations of the minimal models of CFT. The basic ingredient of all these methods is a
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Figure 1. Ising clusters at low (left) and critical (right) temperatures.

bosonic action for a Gaussian free field. In section 8, I show how lattice models can be related
to the bosonic action and how critical curves can be created by certain vertex operators.

Section 9 begins with definitions and properties of harmonic measure and its multifractal
spectrum. The identification of curve-creating operators as vertex operators of Coulomb gas
is then used to derive Duplantier’s results for many multifractal exponents characterizing
stochastic geometry of critical curves.

The final section, section 10, briefly lists topics related to SLE and its connection with
CFT that had to be omitted. This section may serve as a (necessarily incomplete) guide to the
SLE literature.

2. Critical 2D systems and critical curves

Many very simple lattice models of statistical mechanics exhibit critical phenomena
characteristic of continuous phase transitions. The prototype of all such models is the Ising
model which describes the behaviour of a collection of ‘spin’ variables Si located on sites of a
lattice labelled by the index i and taking values ±1. In this paper, we will only consider two-
dimensional models. In the Ising model, the energy of the system is given by H = −J

∑
SiSj ,

where the sum is over all nearest neighbour pairs of sites ij .
At a finite temperature T various possible spin configurations {S} of the system have

probabilities given by the Gibbs distribution e−H/T /Z, where the partition function is obtained
by summing over all possible configurations: Z = ∑

{S} e−H/T . Qualitative picture of this
model is that at low temperatures the Z2 symmetry between the up (Si = 1) and down
(Si = −1) directions of the spins is spontaneously broken, and the majority of spins points,
say, up. As the temperature is increased, typical configurations involve small domains or
connected clusters of down spins in the sea of up spins. The typical size of such clusters—the
correlation length—increases indefinitely, as the temperature approaches a specific critical
value Tc. At this temperature, the clusters of up and down spins of all possible sizes are mixed
together, and the whole picture is scale invariant, see figure 1.1 The cluster boundaries or
domain walls at the critical point are fractal curves that the SLE focuses on.

To be slightly more precise, let us consider a system in a simply connected region D with
the boundary ∂D, with a very fine lattice inside (essentially, we want the lattice spacing to

1 The applet that produced these pictures is available at http://www.ibiblio.org/e-notes/Perc/contents.htm.

http://www.ibiblio.org/e-notes/Perc/contents.htm
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Figure 2. Domain walls in a finite Ising system. The boundary conditions change at points A and
B, forcing a domain wall to go between these points. Left figure: zero temperature. Right figure:
critical temperature.

be much smaller than the system size and the correlation length at a given temperature), see
figure 2. We can force a domain wall to go between two points A and B on the boundary ∂D.
To this purpose let me impose the following boundary conditions. On the upper portion of the
boundary between A and B we force the spins to be up and on the lower portion to be down.
Then at zero temperature there will be exactly one straight domain wall between the points
A and B. As the temperature increases, the domain wall will wander off the straight line and,
eventually, at the critical temperature will become a complicated fractal curve. These curves
will differ between the members of the statistical thermal ensemble and will have particular
weights or distribution within the ensemble.

Another prototypical example of a model that exhibits critical behaviour is the site
percolation. In this model each site on a lattice is independently coloured grey with probability
p or white with probability 1 − p. For each lattice there is a critical value p = pc such that an
infinite connected cluster of grey sites appears in the system (that is, for p � pc all the grey
clusters are finite). For a triangular lattice pc is known to be exactly 1/2. A good graphical
representation of the critical site percolation on a triangular lattice is obtained if we replace
every lattice point by a hexagon whose vertices lie on the dual honeycomb lattice. Then
we can again force a domain wall into the system by making hexagons grey and white on
two adjacent portions of the boundary. Figure 3 (borrowed from [17]) shows the upper half
plane tiled with such hexagons. All the hexagons to the left of the origin on the horizontal
axis (this is the boundary) are coloured grey and all the hexagons to the right are coloured
white. This produces a domain wall separating grey and white hexagons the beginning of
which is shown in figure 3. Figure 4 shows a much bigger system with the same boundary
conditions.

Both the Ising and percolation models can be included in a larger class of models, loosely
called the loop models, since their partition functions can be written as sums over loop
configurations L, either on the original or some related (the dual or the surrounding) lattice.
Mappings between specific lattice models and loop models are described in detail in many
reviews [22, 24–26]. Here, I only mention the O(n) model because of the richness of its phase
diagram. The model is defined in the simplest way on the honeycomb lattice directly in terms
of closed loops:

ZO(n) =
∑
L

xLnN . (1)

Here, x is the variable related to the temperature, L is the total length of all loops and N is their
number in the configuration L.
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Figure 3. Critical percolation on a triangular lattice with a boundary condition that forces a domain
wall (percolation hull) between the origin and infinity. The figure is borrowed from [17].

Figure 4. A long percolation hull. The figure is borrowed from [17].

It is known from various approaches that the O(n) model has a critical point at some
value xc(n) for all n in the range −2 � n � 2. At the critical point the mean length of a loop
diverges, but loops are dilute in the sense that the fraction of the vertices visited by the loops
is zero. For x > xc(n), the loops are still critical but now visit a finite fraction of the sites.
This is called the dense phase of the loop model. Finally, at zero temperature (x = ∞) the
loops go through every point on the lattice, and this is called the fully packed phase.

For some values of the parameter n, the O(n) model is related to other known statistical
mechanics models: n = 2 corresponds to the XY model, the limit n = 0 describes self-
avoiding walks or polymers and n = −2 corresponds to the so-called loop-erased random
walk. The dense phase of the O(n) model is also related to the critical point of the q-states
Potts model. The Potts critical point exists for all 0 � q � 4, and at that point the boundaries
of the so-called Fortuin–Kasteleyn clusters that appear in the high-temperature expansion of
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the q-states Potts model are essentially the same as the loops in the dense phase of the O(n)

model with n = √
q.

In all the models mentioned above, one can choose boundary conditions so as to introduce
an open curve starting at one point on the boundary of a domain and ending at another boundary
point. The continuum limit of these open curves with fixed ends on the boundary is exactly
what is being studied using SLE.

One crucial paradigm in the study of critical phenomena is that of conformal invariance
[27, 28]. For the critical curve described above this means that if we map conformally the
region D in which our system is defined into another region D′, then the statistical weights or
the distribution of the critical curves will be invariant under such mapping. In other words, any
two curves that map into each other will have the same weight in the corresponding thermal
ensembles. Then we can study these curves in a standard simple region, which we choose
here to be the upper half plane H with point A at the origin and point B at infinity.

In this set-up we may ask various questions about the critical curves. Some of them
are geometric. For example, we may want to know the fractal dimension of a critical curve.
More generally, we can imagine that the cluster surrounded by a critical curve is charged, and
then the charge distribution on the domain boundary will be very uneven or ‘lumpy’. This
lumpiness is characterized by what is known as the spectrum of multifractal exponents. More
precise definition uses the notion of the harmonic measure of the cluster boundary and is
explained in section 9.

Another class of possible questions is probabilistic. We may ask about the probability
that the critical curve between the origin and the infinity in H passes to the left of a given point.
Another question asks for the probability of the critical curve to touch the boundary at certain
places in certain order. This is related to the so-called crossing probability in percolation that is
defined as the probability for a connected cluster to span the critical system between two disjoint
segments of the boundary. Sometimes we are interested only in the asymptotic behaviour of
probabilities of such events for large spatial distances. These asymptotic probabilities behave
in a power law fashion with some universal exponents that need to be found.

SLE provides an easy way of answering the above geometric and probabilistic questions
and computing the corresponding quantities. In the following sections, I will introduce the
necessary tools from the theory of conformal maps and stochastic processes and will describe
some calculations with SLE.

3. Conformal maps and Loewner equation

Consider the upper half plane H = {z : Im z > 0}, with a curve γ starting at the origin on the
real axis such that γ ∈ H ∪ {0}. We parametrize the curve by a real variable t ∈ [0,∞), and
denote a point on γ as γ (t) and (closed) segments as γ [t1, t2].

A segment γ [0, t] is an example of the so-called hull. A hull K ⊂ H is a bounded
subset of H such that H\K is simply connected and K = K ∩ H. So, a hull is, essentially,
a bounded (but not necessarily connected) set bordering on the real line R. By Riemann’s
mapping theorem (see [29]), for each such hull there is a conformal map gK that maps H\K to
H. Since conformal automorphisms of H are Möbius transformations with real coefficients,
we can make gK unique by fixing three real parameters. A conventional ‘hydrodynamic’
normalization is such that

lim
z→∞(gK(z) − z) = 0, (2)
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Figure 5. The composition of conformal maps. Here we denote C = A ∪ g−1
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or, equivalently, that near z = ∞ the map has the form

gK(z) = z +
∞∑

n=1

an

zn
. (3)

If the hull K is located a finite distance away from the origin, then gK(z) is regular at z = 0.
In this situation it is more convenient for some purposes (see sections 6.3 and 6.4) to consider
the map �K(z) = gK(z) − gk(0), normalized as

�K(0) = 0, �K(∞) = ∞, �′
K(∞) = 1. (4)

Since the function gK(z) takes real values on the boundary of H\K , the coefficients
an ∈ R. The coefficient a1 = a(K) is called the half-plane capacity (or simply capacity) of
the hull K. For any r > 0, the map gK(z) satisfies the scaling relation grK(z) = rgK(z/r),
which implies the scaling for the capacity

a(rK) = r2a(K), ∀ r > 0. (5)

Thus the capacity has the dimension of area. Geometrically, it is bounded above by R2, where
R is the radius of the smallest semicircle that completely encloses the hull K. Conformal
maps for hulls can be composed as shown in figure 5. Note that the mapping region
monotonically shrinks under such a composition, and the hulls grow. Their capacities satisfy
another important property (additivity or composition rule):

a
(
A ∪ g−1

A (B)
) = a(A) + a(B), (6)

which can be easily checked by composing the conformal maps gA and gB in the form of
Laurent expansions (3) and finding the coefficient a1 of the composed map.

Consider now the map gγ [0,t] = gt for the hull that is a segment of a curve, as in the
beginning of this section. We can always choose the parametrization for the curve in such a
way that

a(γ [0, t]) = 2t. (7)

We will call the parameter t ‘time’, since the evolution of gt in this variable will be of
importance. Then it can be shown that the map gt satisfies a very simple differential equation
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Figure 6. Illustration for the derivation of Loewner equation.

called Loewner equation [30]2:

∂tgt (z) = 2

gt (z) − ξt

, g0(z) = z, (8)

where ξt is a real function that is the image of the tip of the cut γ (t) under the map gt :

ξt = gt (γ (t)).

Let me give an intuitive derivation of this equation. Suppose that we already know the
map gt and want to find out what happens during the time increment between t and t + dt .
Using the composition of maps we write gt+dt = dgt ◦ gt . This composition is illustrated in
figure 6. Under the map gt the segment γ [t, t + dt] is mapped to a (almost) straight short
vertical segment beginning at point ξt ∈ R. Using the additivity property, equation (6), the
capacity of this little segment is

a(gt (γ [t, t + dt])) = 2 dt. (9)

The corresponding conformal map dgt removing the segment is elementary:

dgt (w) = ξt +
√

(w − ξt )2 + 4 dt . (10)

Composing this with gt and expanding in small dt we get

gt+dt (z) = dgt (gt (z)) = ξt +
√

(gt (z) − ξt )2 + 4 dt

≈ gt (z) +
2 dt

gt (z) − ξt

.

This immediately leads to Loewner equation (8) in the limit dt → 0.
There are two ways in which one can think about Loewner equation. The first one was

just presented: given a curve γ in the upper half plane, we can obtain, at least in principle,
the real function ξt in the equation by constructing the corresponding conformal maps. The
second way is the opposite: given a real continuous ‘driving’ function ξt we can plug it into
Loewner equation and solve it forward in time starting with the initial condition g0(z) = z. It
is known that the solution exists, but does not necessarily describe a map from H cut along
a segment of a curve. In some cases, the hull that corresponds to the solution gt contains
two-dimensional regions of the upper half plane, as one of the examples below shows.

In general, the hull generated by the solution of equation (8) is defined as follows. For
a given point z ∈ H, the solution of equation (8) is well defined as long as gt (z) − ξt �= 0.
Thus, we define τz as the first time τ such that limt↗τ (gt (z) − ξt ) = 0. For some points in H

2 This equation has a fascinating history. It was invented in 1923 by Karl Löwner (who later changed his name to
Charles Loewner, see more about him at http://www-gap.dcs.st-and.ac.uk/˜history/Mathematicians/Loewner.html) to
partially solve a famous conjecture from the theory of univalent functions proposed by Bieberbach in 1916. After
many partial successes, the conjecture was finally proved by de Branges in 1985. The key element of the proof was
the same Loewner equation! A very readable account of this story and the proof is given in [31].

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Loewner.html
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the time τz = ∞, meaning that at these points the Loewner map is defined for all times. The
union of all the points z for which τz � t is the hull corresponding to the map gt (z):

Kt = {z ∈ H : τz � t},
and its complement Ht = {z ∈ H : τz > t} = H\Kt is the domain of gt , that is the set of
points for which gt (z) is still defined.

Another useful notion is that of the trace γ produced by Loewner equation. This is
defined as the union points

γ (t) = lim
z→0

g−1
t (z + ξt ), (11)

where the limit is taken within the upper half plane. Note that the trace and the hull are not
necessarily the same objects, as we will see in a simple example below, and especially in the
case of SLEκ for some values of the parameter κ (see section 6.2). The reason for this is that
points may enter the growing hull in two different ways. Some of them are added to the trace
itself, but others are swallowed, or enclosed by the trace ‘inside’ the hull, see examples below.

One can exhibit many explicit solutions of the Loewner equation for several forms of
the driving function ξt , see [32]. I will give here two of them as illustrations. If ξt = c is a
constant, the solution of equation (8) is simply

gt (z) = c +
√

(z − c)2 + 4t .

The corresponding hull is the vertical straight segment between c and c + 2i
√

t . In this case,
the map gt can be found by elementary means.

Another straightforward but instructive example described in detail in [32, 33] deals with
a circular arc of radius r growing in the complex z plane from the point r on the real axis
towards the point −r . The segment of this arc spanning the angle s ∈ [0, π) is mapped to an
interval on the imaginary axis [0, iRs], where Rs = tan(s/2), by the Möbius transformation
z1 = (z − r)/(z + r), and then removed by the transformation from the previous example:
z2 =

√
R2

s + z2
1. Further Möbius transformations are necessary to satisfy the hydrodynamic

normalization (2). This leads to the mapping

gs(z) = r

a2
s

(
as + z2

as − z2
+ 2 − 2a2

s

)
, (12)

where a2
s = 1 + R2

s = 1/ cos2(s/2). The first three conformal maps in this sequence for r = 1
are illustrated in figure 7.

Expanding the function gs(z) near z = ∞ we find the capacity of the arc to be
2t = r2

(
1 − a−4

s

)
. After the reparametrization of the arc and the map gs in terms of t

we get the solution of Loewner equation

gt (z) =
(z − r)2 + 2z

√
r2 − 2t + (z + r)

√
(z + r)2 − 4z

√
r2 − 2t

2z
, (13)

corresponding to the driving function ξt = 3
√

r2 − 2t − 2r . The branches of the square roots
in equation (13) have to be chosen in such a way that

lim
t→r2/2

gt (z) =
{
z + r2/z, for |z| � r,

−2r, for |z| < r.

Note that at time τ = r2/2 the map gt changes discontinuously. At any time before that
the hull of the map is the segment of the arc. But exactly at t = τ the whole region
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Figure 7. The sequence of maps for the construction of the function gs(z) in equation (12). The
figure is borrowed from [32].
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Figure 8. The trace and the hull for a touching event. Here ξt = 2
√

6(1 − t) for t ∈ (0, 1) and 0
elsewhere. Left shows the situation just before touching (t → 1−); right shows the situation after
(t > 1). The trace is the thick dark line. The hull consists of that line plus the grey area. That
area is added to the hull at t = 1. Note that there is a continuum of points added to the hull at the
time of touching, but only one of these, γ (1), is on the trace and is not swallowed. The figure is
borrowed from [34].

D = {|z| < r, Im z � 0} (the upper half of the disc of radius r) is mapped to the point −2r:
all the points in this region are swallowed!

Let me define this notion more rigorously. We say that a point z ∈ H is swallowed if
z /∈ γ [0,∞) but z ∈ Kt for some t. In other words, swallowed points do not lie on the trace,
but get enclosed by the trace in the ‘interior’ portions of the hull. The time when a point gets
swallowed is called the swallowing time for this point.

The time τ = r2/2 is the swallowing time for the whole region D. At this time the hull of
the evolution Kτ is the closed semi-disc D, while the trace is still the semi-circular arc. One
may continue the evolution with the driving function ξt = 0 for t > r2/2, and the trace will
continue to grow as a simple curve from the point −r on the real axis, while the hull will be
Kt = D ∪ γ [r2/2, t], the union of the semi-disc and the portion of the trace grown after time
τ . Similar swallowing of a region is illustrated in figure 8 for ξt = 2

√
6(1 − t) for t ∈ (0, 1)

and 0 elsewhere.
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4. Schramm–Loewner evolution

The remarkable discovery of Schramm [1] was that one can study Loewner equation (8)
with random driving functions and in this way obtain all possible ensembles of curves with
conformally invariant probabilities. Motivated by the conformal invariance of interfaces in
statistical mechanical models, Schramm had argued that the driving function ξt has to be a
continuous stationary stochastic process with independent increments. This argument is well
explained in the existing reviews, here I simply indicate the basic idea. First, if we want to
produce a curve without branching or self-intersections, we need to have a continuous input
ξt . Next, for the curves to possess a conformally invariant distribution, the corresponding
maps have to be composed of statistically independent infinitesimal maps of the form (10).
Together with the reflection symmetry this leads to essentially unique choice of ξt = √

κBt ,
where κ > 0, and Bt is the standard Brownian motion started at ξ(0) = 0 (that is, Wt = dBt/dt

is the white noise with unit strength: 〈Ẇt Ẇs〉 = δ(t − s)). The resulting stochastic Loewner
equation

∂tgt (z) = 2

gt (z) − √
κBt

, g0(z) = z, (14)

and the sequence of conformal maps that it produces came to be known as SLEκ , where SLE
stands for stochastic Loewner evolution or Schramm–Loewner evolution.

Note that after assuming the hydrodynamic normalization (2) and the parametrization in
terms of the capacity (7), κ is the only important parameter of SLE. As we will see shortly, it
completely determines the properties of SLE, its hulls and traces.

Often a shifted version of gt (z) is introduced:

wt(z) = gt (z) − ξt , w0(z) = z.

This function satisfies the simple Langevin-type equation

∂twt (z) = 2

wt(z)
− √

κḂt , w0(z) = z. (15)

It is the simplicity of this equation together with the powerful methods of the theory of
stochastic processes that makes SLE a very versatile calculational tool. I will show how to do
computations with it in the following sections. But first let me summarize the most important
properties of SLE (some of them will be derived later in section 6). These properties are quite
non-trivial. Some of them have been rigorously formulated and established in [35].

• First of all, for all values of κ one can still define the trace of an SLE as the union
of points γ (t) = limz→0,z∈H w−1

t (z) (and this limit exists). Moreover, the trace is a
continuous curve staring at γ (0) = 0, reaching infinity as t → ∞ and never crossing
itself (self-avoiding).

• For 0 � κ � 4, an SLE trace γ is a simple curve (does not have double points). In
this case, the SLE hull coincides with the trace: Kt = γ [0, t] and no point in H gets
swallowed.

• For 4 < κ < 8, an SLE trace has infinite number of double points. The trace sort of
‘touches’ itself and the real axis at every scale. Every time such touching occurs, a whole
finite region of the plane gets swallowed. As time goes on, almost all the points in H

(except the points on the trace) get swallowed.
• For κ � 8, the trace is a space-filling curve (a random analogue of the Peano curve). This

means that no point gets swallowed, but all the points in H lie on the trace.
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Figure 9. The phases of SLE. The figure is borrowed from [33].
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Figure 10. Definition of SLE in an arbitrary simply connected domain D.

• The fractal dimension of the trace is (proven in [36, 37])

df (κ) =
1 +

κ

8
for κ � 8,

2 for κ � 8.

(16)

The different behaviours of traces and hulls of SLE for different values of κ may be called
phases in analogy with statistical mechanics. These are schematically shown in figure 9.

A heuristic derivation of some of these properties given below in section 6 will not be
rigorous but will still require the use of probabilistic techniques. Therefore, in section 5, I
briefly summarize relevant results of stochastic calculus. Then in section 7, I give examples
of practical calculations with SLE, deriving a number of non-trivial critical exponents and
scaling functions.

So far we have defined chordal SLE gt (z) and its traces and hulls only in the upper half
plane H. We can now map any simply connected domain D to H by a conformal transformation
F(z). We fix this function uniquely by requiring that

F(z) = 0, F (ζ ) = ∞, F ′(ζ ) = 1, (17)

where z and ζ are two distinct points on the boundary of D. Then, by definition, the chordal
SLE in D from z to ζ is the family of maps ht (z) = F−1(gt (F (z))), with a possible random
time change, see figure 10. The trace of the new SLE is γ ∗ = F−1(γ ), and the hulls are
K∗

t = F−1(Kt).
Conformal invariance of SLE then means that, first of all, a trace γ ∗ in the domain D

locally looks the same as a trace γ in H. In particular, it has the same fractal dimension.
Secondly, various random events (crossings, swallowings, etc) that correspond to each other
under the map F have the same probabilities. The requirement of such conformal invariance
was crucial in the original definition of SLE.

Most importantly for applications in statistical mechanics, SLE produces conformally
invariant self-avoiding random traces that are statistically equivalent to critical curves in
statistical mechanics models. It is actually very difficult to make this statement precise, and a
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Figure 11. Central charge as a function of κ . Note that κ and κ ′ = 16/κ correspond to the same
c. For example, for both κ = 8/3 and κ = 6 the central charge is zero. These values correspond
to self-avoiding walks and boundaries of percolation clusters.

lot of efforts have gone and are going into establishing the correspondence between SLE for
different values of κ with critical points of various lattice models.

Correlation functions of local quantities at these critical points are described by CFTs
with central charges c � 1. Bauer and Bernard [33] argued that SLE describes critical curves
in all these CFTs. The relation between the SLE parameter κ and the central charge happens
to be

cκ = (8 − 3κ)(κ − 6)

2κ
= 1 − 3

(κ − 4)2

2κ
. (18)

This function is plotted in figure 11. It possesses a remarkable duality, namely

cκ = cκ ′ , where κ ′ = 16

κ
. (19)

Duplantier [2, 3] has argued that this duality has a geometric meaning. Namely, in the
language of SLE, for κ > 4 an SLEκ hull Kt has the boundary ∂Kt (also called external
perimeter or frontier), which locally looks like an SLEκ ′ simple curve with fractal dimension
df (κ ′) = 1 + 2/κ .

Note that the central charge vanishes for κ = 8/3 and κ = 6. These values are
special from SLE point of view, since for these values the SLE hulls possess very special
properties called locality and restriction, correspondingly. We will consider these properties in
sections 6.3 and 6.4.

Many different arguments, including comparison of critical exponents, have lead to
correspondences between SLEκ and specific lattice models that we summarize in table 1.

All these models can be related either to the critical point or the dense phase of the O(n)

model, or to the critical point of the q-states Potts model. The Coulomb gas methods map
these models to a Gaussian bosonic field theory with coupling constant g and with background
and screening charges. Within this theory one can identify the curve-creating operators and
establish a relation between g and κ . As a result, we get the following relations between the
parameters n, q, g and κ:

n = −2 cos πg, g = 4

κ
, 2 � κ � ∞, (20)

q = 2 + 2 cos 2πg, g = 4

κ
, 4 � κ � 8. (21)

Mathematically rigorous formulation of conjectures related to general Potts and O(n) models
can be found in [15, 35].

The critical points of O(n) model correspond to the range 2 � κ � 4 (1 � g � 2), while
the dense phase is described by κ � 4 (0 � g � 1). Parts of these ranges correspond to
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Table 1. Some lattice models for which a correspondence with SLE has been conjectured or
rigorously established. The dash in the df (κ ′) column means that the hull and the trace are the
same.

Lattice model κ cκ df (κ) df (κ ′) References

Loop-erased random walk 2 −2 5/4 – [1, 38]
Self-avoiding random walk 8/3 0 4/3 – [39]
Ising model
spin cluster boundaries 3 1/2 11/8 – [35]
Dimer tilings 4 1 3/2 – [35, 40]
Harmonic explorer 4 1 3/2 – [41]
Level lines of Gaussian field 4 1 3/2 – [42]
Ising model
FK cluster boundaries 16/3 1/2 5/3 11/8 [35]
Percolation cluster boundaries 6 0 7/4 4/3 [1, 43, 44]
Uniform spanning trees 8 −2 2 5/4 [38]

negative n. The critical point of the Potts model is the same as the dense phase of the O(n)

model with n = √
q only for positive n, which explains the restriction on κ in equation (21).

All these relations are reviewed below in section 8.
Results presented in section 8 allow us to arrive at detailed geometric description of critical

curves by calculating the spectrum of multifractal exponents of the harmonic measure. These
exponents include and generalize the fractal dimension df (κ) (16). This is done in section 9.

5. Basic results from stochastic calculus

To analyse SLE and apply it to the study of critical curves, we need to use stochastic calculus.
This section provides a brief summary of the necessary techniques.

Here, we only consider one-dimensional stochastic processes. As an example it is useful
to keep in mind a simple diffusion of a particle on an interval (a, b) on the real line. Everything
trivially generalizes to higher dimensions.

All the material in this section and much more is very nicely presented in [45, 46].

5.1. Stochastic differential equations, Itô integrals and martingales

A stochastic differential equation (SDE) is, essentially, a Langevin equation, which
mathematicians like to write in terms of differentials:

dxt = u(xt , t) dt + v(xt , t) dBt . (22)

Here, the first term on the right-hand side is called the drift term, and in the second term Bt is
the standard Brownian motion (BM) started at B0 = 0 (that is, Wt = dBt/dt is the white noise
with unit strength). The process xt describes a random ‘trajectory’ of a Brownian particle.
The simplest example is

dxt = √
κ dBt .

This describes a simple diffusion with the diffusion coefficient κ .
BM is a Gaussian process with independent increments: for any set of times 0 � t1 <

t2 < · · · < tk the random variables

Bt1 , Bt2 − Bt1 , . . . , Btk − Btk−1
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are independent and normally distributed with zero means and variances t1, t2 − t1, etc. We
note here that from this definition it can be shown that all of the following are standard BMs:

−Bt, reflection invariance,

Bs+t − Bs, ∀s, t > 0, time homogeneity,

a−1Ba2t , ∀a > 0, scaling,

tB1/t , time inversion.

(23)

One can write the solution of equation (22) as

xt = x0 +
∫ t

0
u(xs, s) ds +

∫ t

0
v(xs, s) dBs.

The last term here is an Itô integral defined as the limit of finite sums∑
i

v
(
xsi

, si

)(
Bsi+1 − Bsi

)
.

Note the important property that the integrand is taken always at the left end of the time
interval. Then it is always independent of the increment of the BM multiplying the integrand.
This means that upon averaging over Bt all the terms in the above sum vanish. The same is
true then for the Itô integral:

Ex

[∫ t

0
v(xs, s) dBs

]
= 0. (24)

Here Ex[· · ·] stands for the expectation value, or the average over the realizations of Bt , and
the superscript x refers to the initial condition x0 = x. Similarly, we have the following Itô
isometry:

Ex

[(∫ t

0
v(xs, s) dBs

)2
]

= Ex

[∫ t

0
v2(xs, s) ds

]
.

The previous two equations imply another very important property of the Itô integral,
namely, that it is a martingale. Martingale is, essentially, a stochastic process Mt which
satisfies the following properties:

E[|Mt |] < ∞, ∀ t,

E[Mt | history of M up to s] = Ms, ∀ t � s.

The second condition (which is formalized using the notion of filtration of σ -algebras Mt

to describe ‘the history of M’) contains a conditional expectation value (see section 5.6),
and it means that if we know that at some time s the process M has the value Ms , then the
expectation value of this process in the future at any moment t � s is going to be the same
Ms independently of time t. In particular, the unconditional expectation value E[Mt ] = M0 is
simply given by the initial value of the martingale. Martingales necessarily satisfy stochastic
differential equations without drift terms:

dMt = v(Mt, t) dBt . (25)

5.2. Itô formula

Next we need the so-called Itô formula, which describes a change of variables in stochastic
calculus. Suppose that we have an Itô stochastic process xt which satisfies the SDE:

dxt = u(xt , t) dt + v(xt , t) dBt,
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where Bt is the standard BM. Now we take any ‘reasonable’ function f (x, t) (it should be
twice continuously differentiable in both arguments) and define yt = f (xt , t). Then yt is
again an Itô process that satisfies the SDE:

dyt = ∂f (xt , t)

∂t
dt +

∂f (xt , t)

∂xt

dxt +
1

2

∂2f (xt , t)

∂x2
t

(dxt )
2.

Mnemonically, we need to expand to first order in time, but to second order in xt . The quantity
(dxt )

2 is found using the rules

(dt)2 = dt dBt = dBt dt = 0, (dBt)
2 = dt.

Thus (dxt )
2 = v2(xt , t) dt , and the SDE for yt becomes the Itô formula:

dyt =
(

∂f (xt , t)

∂t
+

1

2
v2(xt , t)

∂2f (xt , t)

∂x2
t

+ u(xt , t)
∂f (xt , t)

∂xt

)
dt + v(xt , t)

∂f (xt , t)

∂xt

dBt .

(26)

Often one encounters ‘time-homogeneous’ processes when both u(xt ) and v(xt ) do not
depend explicitly on time. In this case, the process xt is called a diffusion with drift u(xt ) and
diffusion coefficient v2(xt ). For a function yt = f (xt ) of a diffusion the previous formula
slightly simplifies:

dyt =
(

1

2
v2(xt )

d2f (xt )

dx2
t

+ u(xt )
df (xt )

dxt

)
dt + v(xt )

df (xt )

dxt

dBt . (27)

The coefficients here do not depend explicitly on t, which means that in this case the process
yt is also a diffusion. The differential operator Â appearing in the first term here is called the
generator of the diffusion xt :

Âf (x) = 1

2
v2(x)

d2f (x)

dx2
+ u(x)

df (x)

dx
.

We can integrate equation (27):

f (xt ) = f (x0) +
∫ t

0
Âf (xs) ds +

∫ t

0
v(xs)

df (xs)

dxs

dBs. (28)

5.3. Stopping times and Dynkin formula

It is often interesting to study functions of stochastic processes at various random times. Such
a random time τ is called a stopping time if at any moment t we can decide whether τ < t

or not, or, in other words, whether τ has happened before time t. In our basic example we
can consider, for example, the escape time, that is, the first time τ when the diffusing particle
leaves the interval (a, b):

τ(a,b) = inf[t : xt /∈ (a, b)]. (29)

In this example in each realization of our random process we are able to say whether the
particle is in the interval at time t or outside it. Similarly, we can consider the first hitting time
of a closed set A ⊂ R:

τA = inf[t : xt ∈ A].

Now we evaluate equation (28) at some stopping time τ :

f (xτ ) = f (x0) +
∫ τ

0
Âf (xs) ds +

∫ τ

0
v(xs)

df (xs)

dxs

dBs.
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It can be shown that an analogue of the martingale property (24) holds for Itô integrals with
limits that are stopping times (this is related to the so-called strong Markov property of the
BM, which states that even for a stopping time τ the increment Bt+τ − Bτ is a standard BM
independent of Bt for t ∈ [0, τ ]). Then, taking the expectation values on both sides of the last
equation we get the so-called Dynkin formula:

Ex[f (xτ )] = f (x) + Ex

[∫ τ

0
Âf (xs) ds

]
. (30)

We assumed here that x0 = x. Also, to really prove this formula, one needs to assume that
Ex[τ ] < ∞.

The Dynkin formula is extremely useful when we need to find various escape probabilities.
Let me consider one example in detail. Suppose, we have a diffusion xt started at
x0 = x ∈ (a, b). Then at the exit time τ = τ(a,b) (see equation (29)), the particle can
only escape the interval (a, b) either at the point a or at the point b. Then we can ask the
question: ‘What is the probability that the escape happens through the point a?’ Formally, we
need to find one of the quantities

Pa = P[xτ = a], Pb = P[xτ = b],

where P[X] denotes the probability of the event X. It is obvious that these two probabilities
add to one:

Pa + Pb = 1. (31)

We will find another equation relating pa and pb using the Dynkin formula.
To do this, we consider the expectation value

Ex[f (xτ )] = Paf (a) + Pbf (b).

For any function f (xt ) the LHS of this equation is given by the Dynkin formula. But if we
find a function that satisfies

Âf (x) = 0,

then the Itô formula (27) implies that f (xt ) is a martingale (no drift term in the equation), and
equation (30) simplifies to Ex[f (xτ )] = f (x), and for such a function we get

Paf (a) + Pbf (b) = f (x).

Combining this with equation (31), we finally find

Pa = f (x) − f (b)

f (a) − f (b)
, Pb = f (a) − f (x)

f (a) − f (b)
. (32)

Since Â is a linear differential operator, the function f (x) can usually be found explicitly.
Often it is expressed in terms of the hypergeometric function.

Let us note that to use formulae (32), we need any non-constant zero mode of Â. There is a
continuum of such solutions parametrized by two constants of integration (Â is a second-order
differential operator), but both the additive and the multiplicative constants cancel when a zero
mode is substituted into equation (32).

5.4. Backward and forward Kolmogorov equations

Let us denote

b(x, t) = Ex[f (xt )].
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Then taking Ex of both sides in equation (28) and differentiating with respect to t, we get

∂b

∂t
= Ex[Âf (xt )].

It turns out that the right-hand side here can be expressed in terms of b(x, t) also. Roughly
speaking (this is not very trivial), the expectation value and the operator Â can be interchanged
(after this Â acts on the variable x), giving the so-called backward Kolmogorov equation:

∂b

∂t
= Âb, b(x, 0) = f (x). (33)

Note that this is different from the more familiar Fokker–Planck equation. In fact, the
Fokker–Planck equation (called the forward Kolmogorov equation in mathematics) involves
the operator Â∗ that is adjoint to Â:

Â∗f (x) = 1

2

d2

dx2
(v2(x)f (x)) − d

dx
(u(x)f (x)).

The forward Kolmogorov equation involving Â∗ appears as follows. The process xt has
the transition measure density pt(y, x), which means that the expectation values of functions
of xt can be found like this:

Ex[f (xt )] =
∫

f (y)pt (y, x) dy.

This is equivalent to pt(y, x) = Ex[δ(xt −y)], which is a familiar definition of the probability
density for the process xt . The density pt(y, x) is also the kernel or the Green’s function of
the diffusion xt . It is this function that satisfies the forward Kolmogorov equation with respect
to the final coordinate y:

∂

∂t
pt (y, x) = Â∗

ypt (y, x).

Because the operator Â∗ has all the derivatives on the left, the total probability is conserved:∫
pt(y, x) dy = Ex[1] = 1.

5.5. Feynman–Kac formula

A simple generalization of the backward Kolmogorov equation (33) is the so-called Feynman–
Kac (FK) formula. It concerns the expectation value

c(x, t) = Ex

[
exp

(
−

∫ t

0
V (xs) ds

)
f (xt )

]
,

where V (x) is a continuous function such that the integral in the exponent converges as
t → ∞, f (x) is as before, and xt is a time-homogeneous Itô process (a diffusion). The FK
formula is the following partial differential equation for c(x, t):

∂c

∂t
= Âc − V c, c(x, 0) = f (x). (34)

This formula is obtained (schematically) as follows. We define

Dt(x) =
∫ t

0
V (xs) ds, C(xt , t) = e−Dt (x)f (xt ). (35)

The process C(xt , t) explicitly depends on t through its first factor, and the Itô equation for it
is obtained from formula (22)

dC(xt , t) = [Â − V (xt )]C(xt , t) dt + v(xt )
∂C(xt , t)

∂xt

dBt . (36)
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Upon averaging the last term vanishes, as usual, and we get

∂c

∂t
= Ex[(Â − V (xt ))C(xt , t)].

Similar to the case of the backward Kolmogorov equation, the right-hand side can be expressed
in terms of c(x, t), which results in equation (34).

There is a variant of the FK formula that we can call a stationary FK formula. Namely,
we can choose the function f (x) in equation (35) to satisfy the stationary version of
equation (34):

[Â − V (x)]f (x) = 0. (37)

Then the process C(xt , t) defined in equation (35) with f (x) being a solution of (37) is a
martingale, since the drift term in the Itô formula (36) vanishes! The expectation value c(x, t)

is then really a function of x only and is equal to f (x) for all times.
Now if we know that the process xt is transient, that is, limt→∞ xt = ∞, we normalize

f (x) such that f (∞) = 1, and denoting D(x) = D∞(x) < ∞ we get

f (x) = lim
t→∞ Ex[C(xt , t)] = Ex[e−D(x)]. (38)

It should be clear now that in this situation we can compute the characteristic function
χ(k, x) = Ex[eikD(x)] of the random variable D. In addition, if the variable D(x) is known
to be non-negative, the same approach gives the Laplace transform L(s, x) of its probability
distribution function p(D, x):

L(s, x) = Ex[e−sD(x)] =
∫ ∞

0
e−sD(x)p(D, x) dD. (39)

Note that all the quantities D(x), χ(k, x), L(s, x) and p(D, x) implicitly depend on x, the
initial value of the random process xt .

5.6. Conditional probabilities and expectation values

Sometimes in the study of random variables and stochastic processes it is interesting or
necessary to restrict the statistical ensemble of realizations to a sub-ensemble satisfying a
certain condition. This condition may depend on the outcome of a certain random event. For
example, for a diffusion on the real line we may consider only trajectories that always stay on
the positive semi-axis or the ones that happen to be on the positive semi-axis at a certain time.
Such a restriction of an ensemble is called conditioning.

Within a restricted or conditioned ensemble we can ask for probabilities of various events
or expectation values of random quantities. These are called conditional probabilities and
expectation values. In words we can say: ‘What is the probability of an event A given that an
event B happened?’ Such probability is denoted by P[A | B]. It is well known in probability
theory that conditional probabilities are easily calculated by

P[A | B] = P[A and B]

P[B]
, (40)

where P[A and B] is the unconditioned probability that the events A and B both happen, and
P[B] is the unconditioned probability that the event B happens. Note that equation (40) only
makes sense if the event B has non-zero probability P[B] > 0.

Similarly, given that an event B occurs, we may want to find the expectation value of a
random variable X, denoted as E[X | B]. Conditional expectation values have many known
properties, but there is no general explicit formula for them similar to equation (40).
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6. Basic properties of SLE

In this section, based mainly on [35, 47, 48], we consider the basic properties of SLE. Some of
them have already been mentioned, and they will be here illustrated by plausible arguments.
These arguments already require some calculations typical for SLE. The main idea of most
simple calculations with SLE is to look at various random events in the z-plane where SLE
hulls are growing (I will refer to it as the ‘physical plane’), and, then see what happens at
the same time in the w-plane (referred to as the ‘mathematical plane’). Then we choose a
simple real function of the SLE process and study the values this function assumes during the
interesting events.

6.1. Scaling

The scaling property of the Brownian motion (23) immediately implies the scaling for the
SLE processes gt (z) and the growing SLE hulls Kt . Namely, we have the following stochastic
equivalence:

gt (z) = 1

a
ga2t (az), wt (z) = 1

a
wa2t (az), in law. (41)

By this we mean that the random quantities on both sides of these equations have the same
probability distribution. Equation (41) is easily derived by observing that the SDE for the
right-hand side contains

√
κ

a
Ba2t as the driving function. The scaling for the SLE processes

(41) immediately implies a similar scaling for the SLE hulls:

Kt = 1

a
Ka2t , in law. (42)

6.2. Phases on SLE

The phases of SLE were already described above in section 4. Here, we provide a crude
derivation of the phases and phase transitions between them.

6.2.1. Transition at κ = 4. First, we discuss the transition at κ = 4. To this end, we will
fix a point x ∈ R on the real axis in the physical plane and consider the motion of its image
xt = wt(x) up to the time when it hits 0 (which may never happen):

dxt = 2

xt

dt − √
κ dBt, x0 = x.

In the mathematical plane, we fix points a and b on the real axis so that

0 < a < x < b < ∞.

Let τ be the exit time from the interval (a, b). Being continuous, the process xt can exit (a, b)

either through a (with probability Pa) or through b (with probability 1 − Pa). As described in
section 5.3, the probability Pa can be found if we know a non-constant zero mode f (x) of the
generator of diffusion xt , see equation (32).

Now if we take the limits a → 0, b → ∞, it becomes the probability for xt to hit 0 in a
finite time, which is the probability for the point x on the physical plane to belong to the hull:

P = lim
b→∞

lim
a→0

f (x) − f (b)

f (a) − f (b)
. (43)
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In general, the order of limits matters here. If it is reversed,

P̃ = lim
a→0

lim
b→∞

f (x) − f (b)

f (a) − f (b)
(44)

is the probability for xt to come arbitrarily close to 0, that is, for the hull to come arbitrarily
close to the boundary. Note that in order to determine these probabilities, only the behaviour
of a zero mode of Â at zero and at infinity is necessary.

The generator for the process xt is

Â = κ

2

d2

dx2
+

2

x

d

dx
.

A non-constant zero mode of this operator is

f (x) =
{|x|1− 4

κ for κ �= 4,

log|x| for κ = 4.

Substituting this into equations (43) and (44) we find that the answer is independent of x, thus
the probability for the hull to touch the boundary is

P =
{

0 for κ � 4,

1 forκ > 4.

For κ = 4 the order of limits is important and we find that

P̃ =
{

0 for κ < 4,

1 for κ � 4.

These formulae clearly exhibit a sort of ‘phase transition’ at κ = 4.

6.2.2. Transition at κ = 8. This transition is more subtle. To study it, we fix two points
0 < x < y < ∞ on the real axis in the physical plane and compare the times τx and τy when
they enter the growing SLE hull. For κ > 4 both these times are finite.

It happens that for κ < 8 there is a finite probability that the points x and y are swallowed
simultaneously: P[τx = τy] > 0. On the other hand, for κ � 8, with probability 1, τx < τy .
In this case, the points on the real axis are added to the trace sequentially. The same is true
for points in H.

To make these statements plausible (without giving a real proof), let us consider
xt = wt(x), yt = wt(y) and qt = log yt

xt
. By continuity it is clear that 0 � xt � yt � ∞ for

all times, so 0 � qt � ∞.
If x joins the hull before y (that is, τx < τy), then qτx

= ∞ and the probability
P
[
qτx

= ∞]
> 0 (as well as P

[
qτx

= 0
]

> 0). If the points x and y join the hull simultaneously,
then qt stays finite (bounded) for all times up to τx = τy and P

[
qτx

= ∞] = 0. So we need to
consider the motion of qt .

Using Itô formula for qt we get

dqt = 1

yt

dyt − 1

xt

dxt − 1

2y2
t

(dyt )
2 +

1

2x2
t

(dxt )
2.

Here we need to substitute, as usual,

dxt = 2

xt

dt − √
κ dBt, dyt = 2

yt

dt − √
κ dBt .

This gives the following SDE:

dqt =
(κ

2
− 2

) (
1

2x2
t

− 1

2y2
t

)
dt +

√
κ

(
1

xt

− 1

yt

)
dBt .
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Note that this equation is not of standard Itô type, since the coefficients of the right-hand side
depend separately on xt and yt , but not on qt . This is easily remedied by a trick that is called
‘a random time change’.

This time change amounts to considering a new time variable

t̃ =
∫ t

0

ds

x2
s

,

which is a monotonic function of t (since we integrate a positive quantity x−2
s ). In differential

form the time change is

dt̃ = dt
/
x2

t .

We also need to consider the stochastic process

B̃t =
∫ t

0

dBs

xs

, dB̃t = dBt

xt

.

Note that

(dB̃t )
2 = (dBt)

2
/
x2

t = dt
/
x2

t = dt̃ .

Therefore, the process Bt̃ = B̃t is the standard Brownian motion with respect to the new
time t̃!

In terms of the new variables the SDE for qt̃ takes the standard Itô form:

dqt̃ =
(κ

2
− 2

)
(1 − e−2q) dt̃ +

√
κ(1 − e−q) dBt̃ .

The generator of diffusion for this process is

Â = κ

2
(1 − e−q)2 d2

dq2
+

(κ

2
− 2

)
(1 − e−2q)

d

dq
,

and we need to find a zero mode of this operator to study the probability P[qt = ∞].
The equation Âf = 0 can be easily solved by rewriting it as (prime denotes the derivative

with respect to q)

f ′′

f ′ = (log f ′)′ =
(

4

κ
− 1

)
coth

q

2
.

When we integrate this equation, we can drop the integration constants, which are inessential,
as was explained in the end of section 5.3:

log f ′ =
(

8

κ
− 2

)
log

(
sinh

q

2

)
, f ′ =

(
sinh

q

2

) 8
κ
−2

.

Since we now only consider κ > 4, the function f ′(q) exponentially decays as q → ∞, and
we can choose (ignoring a multiplicative constant)

f (q) =
∫ ∞

q

(
sinh

s

2

) 8
κ
−2

ds.

When q → 0, this integral converges at the lower limit when κ < 8, and in this case we get
P[qτx

= 0] > 0. On the other hand, when κ � 8, the function f (q) diverges as q → 0, and
P[qτx

= 0] = 0, implying that P
[
qτx

= ∞] = 1.
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Figure 12. Various maps in the definitions of locality and restriction. Similar figure illustrating a
commutative diagram of conformal maps first appeared in [48].

6.3. Locality

Many properties of SLE can be discovered by studying how SLE gets perturbed by distortions
of the boundary of the domain where it evolves. Such distortions can be described by conformal
maps. This setting is similar to the definition of SLE in an arbitrary simply connected domain
D in section 4, but there are important differences.

Specifically, let us consider a usual SLEκ evolving in the upper half plane. Consider a
hull A located a finite distance away from the origin. Then the SLE trace may hit the hull and
have a non-zero overlap with its interior. Note that this would not happen for SLE defined in
the domain H\A as in section 4. Let the hitting time of the hull A be τA. Next we consider
the image of the SLE under the map �A removing the hull A from the upper half plane and
normalized as in equation (4):

�A(0) = 0, �A(∞) = ∞, �′
A(∞) = 1. (45)

The SLE hulls Kt get mapped to hulls K̃t = �A(Kt), and these can be removed from H by
the family of maps g̃t . Though this procedure works for any value of κ , for simplicity we
illustrate it in figure 12 for κ � 4, in which case SLE hulls are the traces. The maps g̃t are
normalized as

g̃t (z) = z +
at

z
+ o(z−1), z → ∞,

where at is the capacity of K̃t , and evolve according to the Loewner equation

∂t g̃t (z) = ∂tat

g̃t (z) − ξ̃t

. (46)

We now want to find the properties of the driving function ξ̃t and see if there is a time
change that would make it a Brownian motion

√
κBt̃ . If this is the case, then g̃t (z) is the

standard SLEκ , at least for t � τA. This implies that the original SLE gt is the same as
the SLE defined in the domain H\A according to section 4, see figure 10 and equation (17).
Loosely speaking, we can say that in this situation the SLE gt does not feel the presence of
the hull A until Kt hits A. This justifies the name locality for this property. As we will see
next, this happens only for κ = 6, which was rigorously established in [47] ([48] contains a
simpler proof that we follow here), and is in perfect agreement with the statement that SLE6

describes the scaling limit of critical percolation interfaces. Even on the lattice such interfaces
are determined locally, since every site is black or white independently of the others.

To find the capacity at and the driving function ξ̃t we note that the hull Kt ∪ A can be
removed by a different sequence of maps. Namely, we first remove the hull Kt of the original
SLE by gt . Doing this, we deform the hull A into a hull At . Next we remove the hull At by
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the map �t = �At
normalized the same way as �A, see figure 12 where an infinitesimal step

from t to t + dt is also shown. Then we have a commutative diagram of maps, meaning that

g̃t (�A(z)) = �t(gt (z)). (47)

In particular, for the image of the tip of the trace γ (t) we have

ξ̃t = g̃t (�A(γ (t))) = �t(gt (γ (t))) = �t(ξt ), (48)

where ξt = √
κBt is the usual SLE driving function.

From the derivation of Loewner equation in section 3 we already know that the capacity of
the infinitesimal vertical segment gt (γ [t, t + dt]) is 2 dt , see equation (9). When this segment
(together with the hull At ) is mapped to H by �t , it simply gets rescaled by �′

t (ξt ). (Note
that the map �t is regular away from the hull At , and in particular, at the point ξt . Also, since
the map preserves a portion of the real axis near ξt , its derivative �′

t (ξt ) > 0). Therefore, the
scaling property of the capacity, equation (5), implies

∂tat = 2�′
t (ξt )

2. (49)

Taking time derivative of equation (47) and using equations (46) and (49) we get

2�′
t (ξt )

2

g̃t (�A(z)) − ξ̃t

= ∂t�t (gt (z)) + �′
t (gt (z))

2

gt (z) − ξt

.

Denoting w = gt (z) and using equation (48) we simplify this to

∂t�t(w) = 2�′
t (ξt )

2

�t(w) − �t(ξt )
− 2�′

t (w)

w − ξt

.

The right-hand side of this equation is non-singular in the limit w → ξt . To see this we expand
it in powers of (w − ξt ) (using Mathematica):

∂t�t(w) = −3�′′
t (ξt ) +

(
1

2

�′′
t (ξt )

2

�′
t (ξt )

− 4

3
�′′′

t (ξt )

)
(w − ξt ) + O((w − ξt )

2). (50)

The first term of the expansion gives ∂t�t (w)
∣∣
w=ξt

= −3�′′
t (ξt ).

Finally, using Itô formula for ξ̃t = �t(ξt ), we have

dξ̃t = ∂t�t(w)
∣∣
w=ξt

dt + �′
t (ξt ) dξt +

1

2
�′′

t (ξt )(dξt )
2

= �′
t (ξt ) dξt +

(κ

2
− 3

)
�′′

t (ξt ) dt.

For κ = 6 and only for this value the drift term in the above equation vanishes, and dξ̃t

becomes
√

κ dBt̃ after the random time change dt̃ = �′
t (ξt )

2 dt , proving locality for SLE6.

6.4. Restriction

In this section, we consider the same set-up as in the previous one, but only for κ � 4. In this
case SLE traces are simple curves, and there is a non-zero probability P[γ ∩ A = ∅] that a
trace γ [0,∞) does not intersect the hull A. This is also the probability that the hitting time
τA = ∞. The collection of these probabilities for all hulls A located a finite distance away
from the origin completely characterizes the distribution of the curve γ , since it determines
the likelihoods for the curve to go through various places. As we will show in this section,
these probabilities can be found for SLE8/3 in term of the map �A normalized again as in
equation (45).

Given that an SLEκ trace does not intersect A, we can map the whole trace together with
H\A to H by the map �A and ask what the probability distribution of the image �A(γ ) is.



12626 I A Gruzberg

If this distribution happens to be the same SLEκ , we say that SLEκ satisfies the restriction
property. Following [48], where conformal restriction was introduced and rigorously studied,
we will show below that this happens only for κ = 8/3.

We start by studying the rescaling factor �′
t (ξt ) as a function of time. The second term in

the expansion (50) leads to

∂t�
′
t (w)

∣∣
w=ξt

= 1

2

�′′
t (ξt )

2

�′
t (ξt )

− 4

3
�′′′

t (ξt ),

and then Itô formula gives

d�′
t (ξt ) = ∂t�

′
t (w)

∣∣
w=ξt

dt + �′′
t (ξt ) dξt +

1

2
�′′′

t (ξt )(dξt )
2

= �′′
t (ξt ) dξt +

(
1

2

�′′
t (ξt )

2

�′
t (ξt )

+

(
κ

2
− 4

3

)
�′′′

t (ξt )

)
dt.

The drift term in this equation cannot be removed by any choice of κ . However, if we apply
Itô formula again to M

(h)
t = �′

t (ξt )
h, we get

dM
(h)
t

hM
(h)
t

= d�′
t (ξt )

�′
t (ξt )

+
h − 1

2

[d�′
t (ξt )]2

�′
t (ξt )2

= �′′
t (ξt )

�′
t (ξt )

dξt +

(
(h − 1)κ + 1

2

�′′
t (ξt )

2

�′
t (ξt )2

+

(
κ

2
− 4

3

)
�′′′

t (ξt )

�′
t (ξt )

)
dt. (51)

If we now choose κ = 8/3 and h = 5/8, the drift term in the last equation vanishes, which
implies that M

(5/8)
t is a martingale. Then, on the one hand, the expectation value of M

(5/8)
t is

given by the value of this process at t = 0:

E
[
M

(5/8)
t

] = M
(5/8)

0 = �′
0(ξ0)

5/8 = �′
A(0)5/8.

On the other hand, let us consider the expectation value at the stopping time τ when the trace
γ hits for the first time either the hull A or the semi-circular arc CR of radius R centred at the
origin and completely enclosing A. The following argument is very similar to the application
of Dynkin formula to diffusions on an interval in section 5.3.

At time τ we have two options: either γ (τ) hits the hull A (in which case τ = τA) or it
hits the arc CR (in which case τA > τ ). Then,

E
[
M(5/8)

τ

] = P[τ = τA]�′
τA

(ξτA
)(5/8) + P[τA > τ ]�′

τ (ξτ )
(5/8).

In the first case, the point ξτA
hits a ‘side’ of the hull AτA

(see figure 12) where the
derivative �′

τA
(ξτA

) vanishes. Thus, only the second option contributes to the expectation

value E
[
M

(5/8)
τ

]
. Then if we take the radius R to be very large, the point ξτ becomes very

far from the hull Aτ and the derivative �′
τ (ξτ ) tends to 1. Since the expectation value of a

martingale does not depend on time, by taking the limit R → ∞ we obtain

P[γ ∩ A = ∅] = P[τA = ∞] = �′
A(0)5/8. (52)

The beautiful equation (52) can now be used to show that SLE8/3 satisfies restriction
property. To do this, let us consider two different hulls A and B (as in figure 5), both a finite
distance from the origin, and calculate the conditional probability that the image �A(γ ) of an
SLE trace does not intersect the hull B, given that the original trace γ does not intersect the
hull A. This is done using equation (40) for conditional probabilities:

P[�A(γ ) ∩ B = ∅ | γ ∩ A = ∅] = P
[
γ ∩ (

A ∪ �−1
A (B)

) = ∅
]

P[γ ∩ A = ∅]
.
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According to equation (52) the denominator is equal to �′
A(0)5/8. The hull A ∪ �−1

A (B)

that appears in the numerator in the last equation is removed by the composition �B ◦ �A

(see figure 5), so the probability in the numerator is equal to (�B ◦ �A)′(0)5/8 =
�′

B(�A(0))5/8�′
A(0)5/8 = �′

B(0)5/8�′
A(0)5/8, where we used the product rule for the

derivative and the normalization �A(0) = 0. Combining all this, we get

P[�A(γ ) ∩ B = ∅ | γ ∩ A = ∅] =
(

�′
B(0)�′

A(0)

�′
A(0)

)5/8

= �′
B(0)5/8.

Thus, the image under �A of the subset of the SLE8/3 traces that avoid the hull A has the same
distribution as SLE8/3, which by definition implies restriction property for SLE8/3.

The notion of restriction can be applied to probability measures on sets of random hulls
in the upper half plane that are more general than simple curves. These hulls K must be
connected, unbounded, and such that K ∩ R = 0 and C\K is connected. As was proven
in [48], there is a one-parameter family of conformally invariant measures on such hulls that
have the restriction property. For all these measures, the probabilities of avoiding a fixed hull
A, as before, are given by

P[K ∩ A = ∅] = �′
A(0)h, (53)

where the restriction exponents h � 5/8 characterizes a particular probability measure.
Restriction measures with exponents h > 5/8 are not realized on simple curves. An important
example is given by the so-called Brownian excursions (two-dimensional Brownian motions
conditioned to always stay in the upper half plane) which satisfy restriction property with
h = 1.

For any value of κ in the interval [0, 4] other than 8/3, SLEκ does not have restriction
property, since no value of h makes M

(h)
t a martingale, see equation (51), and the relation (53)

is not satisfied. However, the amount by which SLEκ fails to satisfy restriction property can
be quantified. Namely, let Sf denote the Schwarzian derivative of the function f :

Sf (z) = f ′′′(z)
f ′(z)

− 3

2

(
f ′′(z)
f ′(z)

)2

.

Then,

�′
t (ξt )

h exp

(
−cκ

6

∫ t

0
S�s(ξs) ds

)
is a martingale (this is an easy consequence of Itô formula and equation (51)), if we choose

h = 6 − κ

2κ
, cκ = (8 − 3κ)(κ − 6)

2κ
. (54)

Note the appearance of the central charge cκ of the CFT corresponding to SLEκ . This is
quite natural, since distortions of the boundary of the domain in which a CFT is defined
cause changes in its partition function that depend on the central charge. The exponent h in
equation (54) also has a meaning in CFT: it is the dimension h1,2 of a primary operator that
creates a critical curve when inserted on the boundary, see equation (96). Restriction property
has been used to relate SLE with CFT in [49–53].

Finally, let me mention that restriction measures with exponents h > 5/8 can be
constructed by adding certain Brownian ‘bubbles’ (subsets of 2D Brownian motions that
are closed loops) to an SLE curve with κ � 4, see [48].

7. Calculations with SLE

In this section, I will give detailed examples of calculations of various probabilities and
geometric characteristics of critical curves using SLE.
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7.1. Left passage probability

This section is adapted from [54].
Let us fix a point z = x + iy ∈ H in the upper half of the physical plane. We may ask

whether the trace γ passes to the right or to the left of this point. Formally, this is defined
using the winding numbers, as follows. We can close the curve γ [0, t] by drawing the arc with
the radius |γ (t)| from the tip of the trace to the point |γ (t)| on the positive real axis, and then
draw the straight segment in R to 0. Then, the trace γ passes to the left of z if the winding
number of the closed curve defined above is 1 for all large times t. Since γ is transient a.s.,
there is some random time τ such that the winding number is constant for t ∈ (τ,∞). This
constant is either 0 or 1, since γ does not cross itself. The random time τz for a given z is
either ∞ (if κ � 4) or the swallowing time of z. Then, the trace γ satisfies

P[γ passes to the left of z] = 1

2
+

�
(

4
κ

)
√

π�
(

4
κ

− 1
2

) x

y
2F1

(
1

2
,

4

κ
; 3

2
;−x2

y2

)
.

The idea of the proof of this statement, as well as similar statements about crossing
probability, is to see what happens in the mathematical plane and relate events in the
mathematical plane with some real-valued random functions of the SLE process. For this
purpose, we consider the image of z under the shifted function wt = wt(z) and define

ut = Re wt, vt = Im wt, qt = ut

vt

.

Then it is almost obvious that γ is to the left of z if and only if limt↗τz
qt = ∞, and γ is

to the right of z if and only if limt↗τz
qt = −∞. A heuristic argument for κ � 4 is as follows.

In this case, the point z is not swallowed (τz = ∞). If the trace γ passes to the left of z,
then a particle which starts an unbiased isotropic two-dimensional diffusion from z will hit
R ∪ γ (0,∞) either in [0,∞) or from the right side of γ with probability 1. By definition (see
section 9 for details), this probability is the harmonic measure of γ (0,∞) ∪ [0,∞) from z.
It is conformally invariant, which means that the harmonic measure in the mathematical UHP
of [ξt ,∞) from gt (z) tends to 1 as t → ∞. And this, in turn, means that limt→∞ qt = ∞.

In the case 4 < κ < 8, the point z is swallowed at some time τz which is finite with
probability 1. At this time the curve γ closes a loop around z. Then the issue is whether the
loop is clockwise or counter-clockwise. In the first case for times t close to τz, the harmonic
measure of γ (0, t)∪R is mostly concentrated on [0,∞) and the right side of the curve γ (0, t),
which implies that limt↗τz

qt = ∞. For a counter-clockwise loop, the same reasoning gives
limt↗τz

qt = −∞.
Next we will use the Itô formula to write the stochastic equation for qt , and then the

Dynkin formula to find the necessary probability P[limt→∞ qt = ∞]. So, first we have
equations for ut and vt which are just real and imaginary parts of equation (15):

dut = 2ut

u2
t + v2

t

dt − √
κ dBt, dvt = − 2vt

u2
t + v2

t

dt. (55)

The two-dimensional variant of the Itô formula now gives (no explicit time dependence)

dqt = 1

vt

dut − ut

v2
t

dvt = 4qt

u2
t + v2

t

dt −
√

κ

vt

dBt .

This does not look like a standard Itô equation, so we redefine the time variable and the noise.
First, the new time t̃ is introduced as

t̃ (t) =
∫ t

0

dt

v2
t

, dt̃ = dt

v2
t

. (56)
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This is indeed a time change, since t̃ (t) is a monotonically increasing function. Also, note
that as t → τz, vt → 0 sufficiently fast so that t̃ (τz) = ∞. In the new time the equation for qt̃

becomes

dqt̃ = 4qt̃

q2
t̃

+ 1
dt̃ −

√
κ

vt

dBt .

Next we set dB̃t = dBt/vt and note that (dB̃t )
2 = (dBt)

2
/
v2

t = dt
/
v2

t = dt̃ . This means
that Bt̃ = B̃t is the standard Brownian motion with respect to the new time variable t̃ . The
equation for qt̃ now has the standard Itô form:

dqt̃ = 4qt̃

q2
t̃

+ 1
dt̃ − √

κ dBt̃ . (57)

Next we find the diffusion generator for this equation:

Âf (q) = κ

2

d2f (q)

dq2
+

4q

q2 + 1

df (q)

dq
.

If we study this diffusion on an interval (a, b), where a < q < b, then the probability pb that
qt̃ escapes this interval through the right-hand point rather than through the left is given by the
second of formulae (32) where f (q) should satisfy

κ

2
f ′′(q) +

4q

q2 + 1
f ′(q) = 0. (58)

This equation has a constant solution, but this solution is not what we need, obviously. The
other solution is found by straightforward separation of variables (and some specific choice
of the constants of integration):

f (q) =
∫ q

0

dr

(r2 + 1)4/κ
. (59)

We expand the integrand in powers of r and integrate term by term:

f (q) =
∫ q

0
dr

∞∑
m=0

(4/κ)m
(−r2)m

m!
= q

∞∑
m=0

(4/κ)m

2m + 1

(−q2)m

m!
.

Here (a)m denotes the Pochhammer symbol (a)m = �(a + m)/�(a). Using this notation we
can write

1

m + a
= �(m + a)

�(m + 1 + a)
= �(a)

�(1 + a)

(a)m

(1 + a)m
= 1

a

(a)m

(1 + a)m
, (60)

and, in particular, 1/(2m + 1) = (1/2)m/(3/2)m. This gives

f (q) = q

∞∑
m=0

(1/2)m(4/κ)m

(3/2)m

(−q2)m

m!
= q2F1

(
1

2
,

4

κ
; 3

2
;−q2

)
.

Using asymptotics of the hypergeometric function we see that the solution f (q) has finite
limits

lim
q→±∞ f (q) = ±

√
π

2

�
(

4
κ

− 1
2

)
�

(
4
κ

) .

This shows that the considered diffusion of qt̃ is transient, meaning that with a finite probability
limt̃→∞ qt̃ = ∞. Thus, we can finally take limits a → −∞, b → ∞ and get the result

P[γ passes to the left of z] = P[ lim
t↗τz

qt = ∞]

= f (x/y) − f (−∞)

f (∞) − f (−∞)
= 1

2
+

�
(

4
κ

)
√

π�
(

4
κ

− 1
2

) x

y
2F1

(
1

2
,

4

κ
; 3

2
;−x2

y2

)
.
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When κ = 2, 8/3, 4 and 8, the last formula simplifies to

1 +
xy

π |z|2 − arg z

π
,

1

2
+

x

2|z| , 1 − arg z

π
,

1

2
,

respectively.
The value 1/2 obtained for κ = 8 is somewhat misleading. The point is that if κ � 8,

then the curve γ densely fills the upper half plane, as was mentioned in section 6.2, and goes
through every point, not to the left or right of it. This is reflected in the fact that for κ � 8
the function f (q) in equation (59) diverges as q → ±∞. This divergence means that to
determine the fate of the process qt̃ as t̃ → ∞, we need to start with a finite interval (a, b)

(a < x/y < b) and take the limits a → −∞ and b → ∞ separately. In both cases we find
that P[limt↗τz

qt = ±∞] = 0, meaning that qt̃ always stays bounded. See a related discussion
in section 7.3.

7.2. Cardy’s formula for crossing probability

The problem is first posed in a rectangle ABCD. We need to find the probability that there is a
percolation cluster connecting the left side AB and the right side CD of the rectangle, where
we impose the fixed boundary condition (p = 1). Note that from the point of view suggested
by SLE, we need to consider not the cluster itself, but one of its ‘boundaries’, upper or lower.
Let us consider the lower boundary, which in the continuum limit is described by SLE6. Then
we see that if there is a spanning cluster, then the boundary will necessarily start at the point
B and will reach the side CD without touching the upper side AD. In the opposite case, when
there is no spanning cluster, the boundary will touch AD before touching CD.

In fact, this reformulation of the problem can be generalized to any κ > 4, and we will
assume this has been done.

Next we conformally map the rectangle to the upper half plane using the Schwarz–
Christoffel formula. The direct mapping �(z) (from rectangle to the UHP) is given by an
elliptic function and the inverse mapping by an elliptic integral. Postponing the details until
the end of this section, let us assume for now that the images of the vertices of the rectangle
are

�(A) = a < 0, �(B) = 0, �(C) = c > 0, �(D) = ∞. (61)

Since the crossing probability is conformally invariant (as a property of SLE), we are now
interested in the following question. Since κ > 4, both points a and c will be swallowed at
some finite random times τa and τc. The crossing probability is then P[τc < τa], that is, the
probability that the point c is swallowed before the point a.

As should be obvious by now, we need to study the motion of the images of the points
a, b under the Loewner map. In this case it is easier to use the original map (before the shift),
so we define

at = gt (a), ct = gt (c), rt = ξt − at

ct − at

.

The variable rt is normalized to lie between 0 and 1, and we are essentially interested in the
probability P[cτ = ξ(τ )] = P[rτ = 1], where τ is the escape time from (0, 1) for rt .

The calculations are straightforward:

d(ξ − at ) = dξ − 2

at − ξ
dt, d(ct − at ) =

(
2

ct − ξ
− 2

at − ξ

)
dt.
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Then,

drt = d(ξ − at )

ct − at

− ξ − at

(ct − at )2
d(ct − at )

=
(

1

rt

− 1

1 − rt

)
2 dt

(ct − at )2
+

√
κ

ct − at

dBt .

Again, this SDE is not of the Itô type, and we perform a time change:

dt̃ = dt/(ct − at )
2, dB̃t = dBt/(ct − at ).

Then the process r̃t = rt̃ satisfies the Itô equation

drt̃ = 2

(
1

rt̃

− 1

1 − rt̃

)
dt̃ +

√
κ dBt̃ .

The generator of diffusion for this process is

Â = κ

2

d2

dr2
+ 2

(
1

r
− 1

1 − r

)
d

dr
,

and its zero mode f (r) is found by simple integrations as before:

f (r) =
∫ r

0

ds

(s(1 − s))4/κ
.

Since κ > 4, the last integral converges both at the lower and the upper limits, when r → 1.
As in the previous section, using equation (60) this integral can be expressed in terms of the
Gauss hypergeometric function:

f (r) =
∫ r

0
ds s−4/κ

∞∑
m=0

(4/κ)m
sm

m!
= r1−4/κ

∞∑
m=0

(4/κ)m

m + 1 − 4
κ

rm

m!

= 1

1 − 4
κ

r1−4/κ

∞∑
m=0

(4/κ)m(1 − 4/κ)m

(2 − 4/κ)m

rm

m!

= 1

1 − 4
κ

r1−4/κ
2F1

(
4

κ
, 1 − 4

κ
; 2 − 4

κ
; r

)
.

At the ends of the interval for diffusion of rt this function takes the values f (0) = 0 and
f (1) = �2(1 − 4/κ)/�(2 − 8/κ). Substituting this into equation (32) with a = 0, b = 1, we
get the final result

P[crossing] = �
(
2 − 8

κ

)
�

(
2 − 4

κ

)
�

(
1 − 4

κ

) r1−4/κ
2F1

(
4

κ
, 1 − 4

κ
; 2 − 4

κ
; r

)
. (62)

As usual, here r means the initial value of the process rt , that is, r = −a/(c − a). For κ = 6
this reduces to Cardy’s formula for crossing probability for percolation [55].

Now we can discuss how to map a given rectangle to the UHP. Suppose the horizontal and
vertical sides of the rectangle have lengths L and L′. It is obvious that the crossing probability
is invariant under rescaling. Then we need to find the (unique) number 0 < k < 1 (the
so-called elliptic modulus) from

L′

L
= K ′(k)

2K(k)
,

where K(k) is the complete elliptic integral of the first kind and K ′(k) = K
(√

1 − k2
)

(in the
following we simplify these to K,K ′). Next we rescale the rectangle and place its vertices as
follows:

A = −K + iK ′, B = −K, C = K, D = KiK ′.
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It is easy to see then that the function

�(z) = k
1 + sn(z, k)

1 − k sn(z, k)

maps the interior of our rectangle to the UHP and its vertices to

�(A) = −1 − k

2
, �(B) = 0, �(C) = 2k

1 − k
, �(D) = ∞.

Comparing this with equation (61) we obtain r = (
1−k
1+k

)2
, which we need to substitute into

equation (62) to get the crossing probability for the rectangle.

7.3. Fractal dimensions of SLE curves

SLE curves are fractal objects. Their fractal dimension can be estimated by the box counting
dimension. Namely, we can ask how the number of small discs of radius ε required to cover
an SLEκ curve scales with ε:

Nε ∼ ε−df (κ),

where df (κ) is the box counting fractal dimension. Strictly speaking, this definition is
applicable only for finite curves, but it can be applied for any segment of a chordal SLE curve,
since all the segments should be statistically similar.

The fractal dimension df (κ) is related to multifractal exponents of the harmonic measure,
and can be obtained from them, as explained in section 9. In this section we use a probabilistic
approach.

The dimension df (κ) can be estimated in the spirit of Monte Carlo methods by throwing
discs of radius ε randomly onto the domain containing the critical curve and then counting the
fraction of the discs which intersect the curve. Alternatively, we can look for the probability
that an SLE curve intersects a given disc. It is clear that this probability should scale as ε2−df (κ)

(2 here is the dimensionality of the physical plane), and it is this scaling that can be relatively
easily obtained from SLE, with the result (rigorously established in [36, 37], see also an earlier
discussion in [35])

df (κ) = min
(

1 +
κ

8
, 2

)
. (63)

To derive this scaling we need to introduce some notation and properties of conformal
maps. First, let D be a domain in the complex plane, ∂D its boundary and z a point inside D.
Denote by dist(z, ∂D) the Euclidean distance between z and the domain boundary.

If the domain D is mapped conformally to a domain D̃ by a function z̃ = f (z),
then the distance between close points z and z + dz gets multiplied by a rescaling factor:
|dz̃| = |f ′(z)||dz|. The same is roughly speaking true for finite distances. More precisely,
if d = dist(z, ∂D) and d̃ = dist(z̃, ∂D̃), then a corollary to the famous Koebe 1/4 theorem
states that

d̃

4d
� |f ′(z)| � 4d̃

d
or

d̃

4|f ′(z)| � d � 4d̃

|f ′(z)| . (64)

Let us denote these bounds by d � d̃/|f ′(z)| and say that both quantities are comparable.
Now we apply this to the Loewner map wt(z) to estimate the limit of the distance

dt (z) = dist(z, γ (0, t) ∪ R) between a point z and an SLE curve in the physical plane, as the
time goes up to the swallowing time τz (which may be infinite). We use the same notation as in
section 7.1 and write wt(z) = wt = ut + ivt for the image of the point z. In the mathematical
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plane the distance from the image to the boundary is simply Im wt(z) = vt . If we introduce
the process

Dt(z) = log
|w′

t (z)|
Im wt(z)

,

equation (64) gives dt (z) � e−Dt (z). Let us find the SDE for Dt(z). First, the z-derivative of
the basic SLE equation (15) gives

∂t log w′
t (z) = − 2

w2
t (z)

.

The real part of this equation is

∂t log|w′
t (z)| = −2 Re

[
w2

t (z)
]∗

|wt(z)|4 = 2
v2

t − u2
t(

v2
t + u2

t

)2 . (65)

Combining this with equation (55) for vt , we get

∂tDt(z) = 4v2
t(

v2
t + u2

t

)2 � 0.

Thus, Dt(z) increases with t, and to estimate d(z) = dist(z, γ (0,∞) ∪ R) � e−D(z) we need
to look at

D(z) = lim
t↗τz

Dt (z) =
∫ τz

0

4v2
t(

v2
t + u2

t

)2 dt.

As in section 7.1 we change time according to (56) and get

D(x/y) = 4
∫ ∞

0

dt̃(
q2

t̃
+ 1

)2 , (66)

where the process qt̃ = ut̃/vt̃ satisfies the SDE (57) and has the initial value x/y. As we
discussed in the end of section 7.1, if κ � 8 the process qt̃ stays bounded as t̃ → ∞. Then the
integral in equation (66) diverges and D(x/y) = ∞. This immediately gives that d(z) = 0
and

df (κ � 8) = 2, (67)

consistent with the curve γ densely filling the upper half plane.
Now consider the case 0 � κ < 8. Since d(z) � e−D(x/y), the probability P[�(z) � ε]

that the SLE curve intersects the disc of radius ε centred at the point z is comparable to (scales
in the same way with ε as) the probability P[D(x/y) � −log ε]. The latter probability can
be estimated if we find the asymptotics of the probability distribution function p(D, x/y) for
D(x/y).

We expect that the scaling of P[d(z) � ε] with ε should not depend on the actual position
of z. In fact, the SLE scaling property (41) implies that d(x + iy) has the same distribution as
yd

(
x
y

+i
)
, and thus we are free to choose the point z anywhere. To simplify the formulae below,

we will now take the point z to be x + i. Then the process qt̃ starts at q0 = x and is transient,
that is, goes to ∞ or −∞. In both cases the integral (66) is convergent and non-negative, and
we can use the stationary FK formulae (37) and (38) from section 5.5 to find p(D, x) through
its Laplace transform L(s, x). Namely, L(s, x) should satisfy

κ

2

d2L

dx2
+

4x

x2 + 1

dL

dx
− 4s

(x2 + 1)2
L = 0.
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The change of variables y = x2/(x2 + 1) leads to the hypergeometric equation

y(1 − y)
d2L

dy2
+

[
1

2
+

(
4

κ
− 2

)
y

]
dL

dy
− 2s

κ
L = 0.

The solution of this equation normalized as L(s, x = ∞) = 1 is

L(s, x) = �
(

1
2 − a+

)
�

(
1
2 − a−

)
�

(
1
2

)
�

(
4
κ

− 1
2

) 2F1

(
a+, a−; 1

2
; x2

x2 + 1

)
,

(68)

a±(s) = 1

2
− 2

κ
±

√(
1

2
− 2

κ

)2

− 2s

κ
.

The inverse Laplace transform gives the probability density for D:

p(D, x) = 1

2π i

∫ c+i∞

c−i∞
esD(x)L(s, x) ds.

The integration contour should lie to the right of all the singularities of L(s, x) in the s-plane.
If we deform the contour by moving it to the left, it will encircle the poles of L(s, x), and for
large D(x) the leading behaviour of p(D, x) will be determined by the pole with the largest
real part.

Let us now find the singularities of L(s, x) given by equation (68). Since the
hypergeometric function 2F1(a, b; c; x) is an entire function of its parameters a, b, c, the
only singularities of L(s, x) are in the prefactor in equation (68). Gamma functions have poles
when their arguments are non-positive integers: 1/2 − a±(s) = −n, n � 0, which gives the
poles at real positions

sn = −1 +
κ

8
− 2n − κ

2
n2.

The largest pole is at s0 = −1 + κ/8, which gives for large D

p(D, x) ∝ e−(1−κ/8)D.

Finally, we have the estimate

P[d(x + i) � ε] � P[D(x) � −log ε] =
∫ ∞

−log ε

p(D, x) dD ∝ ε1−κ/8,

which gives

df (κ < 8) = 1 +
κ

8
. (69)

Together with (67) this establishes equation (63).

7.4. Derivative expectation

The absolute value of the derivative of the SLE map |w′
t (z)| and its moments are useful

quantities. As for any conformal map |w′
t (z)| is the local measure of rescaling introduced by

the map. For a critical curve described by SLE the moments E[|w′
t (z)|h], where h ∈ R, are

also related to the spectrum of multifractal exponents of the harmonic measure, as explained
in section 9. In this context, the derivative should be estimated at a certain distance from an
SLE curve. Alternatively, of all the SLE curves we should choose only the ones that pass
closer than a certain small distance ε from a given point z. This is an example of conditioning
introduced in section 5.6.

Finding the conditional expectation value E[|w′
t (z)|h; d(z) � ε] at point z in the bulk is

a difficult problem that has not been solved so far (see, however, how similar quantities are
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calculated in [11, 35]). However, each SLE curve starts at the origin in the physical plane,
and no conditioning is required to estimate the derivative of the SLE map at real point x on
the boundary.

Indeed, in this case equation (65) simplifies (since vt = 0) and gives in the notation of
section 6.2.1

∂t log|w′
t (x)| = − 2

x2
t

, |w′
t (x)|h = exp

(
−2h

∫ t

0

ds

x2
s

)
. (70)

According to the Feynman–Kac formula (34), the expectation value c(x, t) = E[|w′
t (x)|h]

satisfies

∂tc(x, t) = κ

2
∂2
x c(x, t) +

2

x
∂xc(x, t) − 2h

x2
c(x, t), c(x, 0) = 1.

From the SLE scaling law (5) we know that x and t must appear in the combination x/
√

t .
With some hindsight we denote y = x2/2κt and c(x, t) = f (y). Then the equation and the
boundary value for f (y) become

y2f ′′(y) + y

(
2

κ
+

1

2
+ y

)
f ′(y) − h

κ
f (y) = 0, lim

y→∞ f (y) = 1.

In the limit y → 0 (long times) we can neglect y in the brackets in front of f ′, and the equation
simplifies to an Euler equation with the solution y�(h)/2, where

�(h) = κ − 4 +
√

(κ − 4)2 + 16κh

2κ
(71)

is a solution of the indicial equation that vanishes as h → 0.
In the context of the problem of multifractal exponents of harmonic measure, the scaling

E[|w′
t (x)|h] ∼

( |x|√
2κt

)�(h)

is all we need. But we can also solve the problem completely. Namely, if we write
f (y) = e−yy�(h)/2ψ(y), then ψ(y) satisfies

yψ ′′(y) + (c − y)ψ ′(y) − aψ(y) = 0, ψ(y → ∞) → eyy−�(h)/2,

a = 2

κ
+

1

2
+

�(h)

2
, c = 2

κ
+

1

2
+ �(h),

which is the standard form of the differential equation for the confluent hypergeometric
function. The solution with the required asymptotic behaviour is [�(a)/�(c)]�(a, c; y), and
we finally get

E[|w′
t (x)|h] = �(a)

�(c)

( |x|√
2κt

)�(h)

e−x2/2κt�

(
a, c; x2

2κt

)
.

8. Critical curves and bosonic fields (Coulomb gas)

In the rest of this paper I will provide a connection between SLE and a more traditional
approach to critical 2D systems, namely, conformal field theory (CFT). In this section, we
will see how critical curves can be described within a CFT of a scalar field. Closely related
discussions have appeared before in [56–58].
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8.1. From loop models to bosonic fields

The relation between critical curves and operators of a boundary CFT is most transparent in
their representation by a Gaussian boson field ϕ(z, z̄) [19, 22, 59, 60]. This representation is
commonly known as the Coulomb gas method. Specifically, let us consider the O(n) model
on a honeycomb lattice. In the hope of describing the critical point by a local field theory, we
need to have a description in terms of local weights on the lattice.

To reproduce the partition function (1) we randomly assign orientations to loops and then
sum over all possible arrangements. The sum of weights for two orientations of every loop
should give n. This is achieved by giving the local weight e± ie0π/6 to each lattice site where an
oriented loop makes right (left) turn. The weight of an oriented closed loop is the product of
all local site weights and is equal to e± ie0π since for a closed loop the difference between the
numbers of right and left turns is ±6. The sum over the orientations reproduces the correct
weight n for an unoriented loop if we choose

n = 2 cos πe0.

The range of −2 � n � 2, where the loops of O(n) are critical, can be covered once by
e0 ∈ [0, 1]. However, as we will see, to describe both the dilute and the dense phases we need
to allow for a wider range e0 ∈ [−1, 1], with positive e0 for the dense phase and negative e0

for the dilute phase.
For each configuration of oriented loops, we can define a real height variable H that

resides on the dual lattice and takes discrete values conventionally chosen to be multiples of
π . To define H we start at some reference point where we set H = 0, and then every time we
cross an oriented loop, we change H by ±π depending on whether we cross the loop from its
left to its right side or vice versa. Since the orientation of the loops was introduced randomly,
the height function has to be compactified with radius R = 1:

H � H + 2π, (72)

which means that the heights H and H + 2π correspond to the same configuration of unoriented
loops.

At criticality, the coarse-grained height function becomes a continuous scalar field (boson),
believed to be described by the Gaussian action (g/4π)

∫
D

d2x(∇H)2, where the fluctuation
strength parameter g is not yet determined. This can be done either by comparison with exact
solutions of a related six-vertex model or by an elegant argument due to Kondev and Henley
[61, 62] (which, unfortunately, only works in the dense phase). Here is the argument.

If the system is defined on a domain with boundaries, some loops may not be counted
with the correct statistical weight. For example, the difference between the numbers of left
and right turns for a loop that wraps around a cylinder is 0 rather than 6. Therefore, without
modifications all such loops will be counted with a wrong weight 2 in the partition function.
This is fixed by adding to the action a boundary term (ie0/2π)

∫
∂D

dl KH, where K is the
geodesic curvature of the boundary. Each loop wrapped around the cylinder introduces an
additional height difference �H = ±π between the ends thus acquiring the correct weight.

A similar situation occurs if the critical system lives on a surface with curvature, which
microscopically can be viewed as an existence of defects on the honeycomb lattice (pentagons
and heptagons correspond to positive and negative curvatures, correspondingly). The correct
weight for a loop that surrounds a region of non-zero curvature is obtained only if we include
in the action the so-called background charge term (ie0/8π)

∫
D

d2x RH, where R is the scalar
curvature.

Yet another necessary term in the action is the locking potential of the form λ
∫

d2x V (H)

which would force the discrete values H = kπ in the limit λ → ∞. It must be, therefore,
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a π -periodic function of H, the most general form of it being V = ∑
k∈Z,k �=0 vk e2ikH . Each

term of V is a vertex operator whose dimension is [22]

xk = 2

g
k(k − e0).

Most of these terms are irrelevant at the Gaussian fixed point, and we can ignore them. The
most relevant term has k = 1 if 0 < e0 < 1, and it has to be strictly marginal (xk = 2) in order
to retain the conformal invariance of the action. This gives the relations

e0 = 1 − g, n = −2 cos πg. (73)

In this case 0 < g < 1, which is known to describe the dense phase of the O(n) model. In the
dilute phase the second relation (73) still holds [22], but with 1 � g � 2. This range is not
possible to obtain from the previous argument since for −1 < e0 < 0 we would need to pick
k = −1 term as the most relevant, and it would still give us g = 1 + e0 = 1 − |e0| < 1. With
some amount of hindsight we will assume both relations (73) to be valid for the whole range
g ∈ (0, 2] encompassing both the dense and the dilute phase. The point g = 1 separating
the phases is somewhat special: there we need to keep both k = 1 and k = −1 terms in the
locking potential since they have the same dimension.

The failure of Kondev’s argument in the dilute phase has a very significant geometric
meaning. Namely, upon the coarse graining the O(n) loops become level lines of the bosonic
field. However this identification can only be made for the dense phase, where the loops come
close to themselves and each other on the lattice, translating to them becoming non-simple
curves (with double points) in the continuum limit, resembling the traces of SLE with κ > 4.
The relation between critical lines and the bosonic field is quite different in the dilute phase,
and this difference is related to quite a few subtleties in the treatment of both the dilute and
the dense phases of a bounded system in the Coulomb gas formalism. For details see our
paper [21].

We now introduce the parametrization

g = 4

κ
, 2 � κ < ∞, (74)

where κ can be identified with the SLE parameter by comparing calculations of some quantity
within the two approaches. A typical example is the distribution of winding angles of critical
curves on a cylinder, which is known through both the Coulomb gas method and SLE.
Another good example is the multifractal exponents related to derivative expectations, which
we compute in the Coulomb gas formalism in section 9. Note that κ < 4 and κ > 4 describe
the dilute and the dense phases, correspondingly, while κ = 4 gives the point g = 1 separating
the two phases. All this is quite consistent with the SLE phases determined in section 6.2.

In the CFT literature it is customary to rescale the field ϕ = √
2gH and make the coupling

constant fixed gnew = 1/2, at the expense of varying the compactification radius of ϕ:

R =
√

8/κ. (75)

This is the normalization that we adopt from now on. For the rescaled field the action with all
the terms becomes

S[ϕ] = 1

8π

∫
D

d2x[(∇ϕ)2 + i2
√

2α0Rϕ]i

√
2α0

2π

∫
∂D

dl Kϕ +
∫

D

d2x ei
√

2α+ϕ, (76)

where we use the notation

2α0 =
√

κ

2
− 2√

κ
, α± = α0 ±

√
α2

0 + 1, α+ = √
κ/2, α− = −2/

√
κ. (77)

Note that α0 is proportional to e0, and can be both positive and negative, its sign being different
in the two phases of the loop model.
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8.2. Coulomb gas CFT in the bulk

Consider now our bosonic theory on the infinite plane (the Riemann sphere), dropping for now
the boundary term in equation (76). The action S[ϕ] does not describe a free field because
of the presence of the locking potential. In practice, however, this potential is always treated
perturbatively, and any correlation function is expanded as

〈X〉S =
∞∑

n=0

1

n!

∫
d2x1 · · ·

∫
d2xn〈ei

√
2α+ϕ(x1) · · · ei

√
2α+ϕ(xn)X〉, (78)

where 〈· · ·〉 stands for correlators in the free theory with action

S0 = 1

8π

∫
D

d2x[(∇ϕ)2i2
√

2α0Rϕ]. (79)

The neutrality condition discussed below makes sure that for a given operator X at most one
term survives in the sum in equation (78). The free action S0 is known to describe a CFT with
the central charge

cκ = 1 − 24α2
0 = 1 − 3

(κ − 4)2

2κ
, (80)

which is the same as equation (18). The holomorphic part of the stress–energy tensor
corresponding to the central charge (80) is

T = − 1
2 :(∂ϕ)2 : +i

√
2α0∂

2ϕ, (81)

where ∂ = ∂/∂z and semicolons stand for normal ordering.
Note that by the appropriate choice of metric, the curvature R may be made to vanish

everywhere in the finite region of the plane. The curvature is then concentrated at infinity,
and its effect is represented by insertion of a certain vertex operator (V−2α0,−2α0 in the notation
of equation (84)) in the correlation functions, thereby changing the neutrality condition, see
discussion below. This prescription, due to Dotsenko and Fateev [23], allows us to calculate
correlators of primary fields (vertex operators) using simple free boson with c = 1 described
by the action (79) but with α0 = 0:

S0 = 1

8π

∫
D

d2x(∇ϕ)2. (82)

In the complex coordinates z = x + iy, z̄ = x − iy, the field ϕ separates into the
holomorphic and antiholomorphic parts:

ϕ(z, z̄) = φ(z) + φ̄(z̄),

and the basic correlators of these fields follow from (82):

〈φ(z)φ(z′)〉 = −log(z − z′), 〈φ̄(z̄)φ̄(z̄′)〉 = −log(z̄ − z̄′), 〈φ(z)φ̄(z̄)〉 = 0. (83)

Primary fields in the theory (79) are electric (vertex) and magnetic (vortex) operators, and
their combinations also called vertex operators for simplicity (they all are implicitly assumed
to be normal ordered):

Ve,0(z, z̄) = ei
√

2eϕ(z,z̄), V0,m(z, z̄) = e−√
2mϕ̃(z,z̄),

Ve,m(z, z̄) = ei
√

2eϕ(z,z̄) e−√
2mϕ̃(z,z̄),

where we introduced the Cauchy–Riemann dual

ϕ̃(z, z̄) = −iφ(z) + iφ̄(z̄)
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of the field ϕ, as well as electric and magnetic charges e and m. A general vertex operator can
also be written as a product of holomorphic and antiholomorphic components:

Vα(z) = ei
√

2αφ(z), V̄ᾱ(z̄) = ei
√

2ᾱφ̄(z̄),
(84)

Vα,ᾱ(z, z̄) = Vα(z)V̄ᾱ(z̄) = ei
√

2αφ(z) ei
√

2ᾱφ̄(z̄),

where the holomorphic and antiholomorphic charges are

α = e + m, ᾱ = e − m.

The holomorphic and antiholomorphic dimensions of the vertex operators follow from
the anomalous stress–energy tensor (81):

h(α) = α(α − 2α0) = h(e,m) = (e + m)(e + m − 2α0),

h̄(ᾱ) = ᾱ(ᾱ − 2α0) = h̄(e,m) = (e − m)(e − m − 2α0).

From this we see that a vertex operator is spinless (meaning that h = h̄) if either ᾱ = α or
ᾱ = 2α0 − α. In the first case the operator is purely electric (m = 0) and in the second case
it can have an arbitrary magnetic charge, but the electric charge should be e = α0. We then
introduce the notation

V (α)(z, z̄) = Vα(z)V̄2α0−α(z̄). (85)

Also note a certain duality: the dimensions of the operators Vα and V2α0−α are the same.
This is consistent with the correlator〈

Vα(z)V2α0−α(z′)
〉 = (z − z′)−2hα .

We see that the sum of the charges of the operators within the correlator is 2α0, which is
the negative of the background charge −2α0 placed at infinity. This is true in general: in
the theory with a background charge correlators of vertex operators do not vanish only if the
following neutrality condition is satisfied—the total sum of charges should equal to 2α0, in
which case the chiral correlator is given by〈

Vα1(z1)Vα2(z2) · · · Vαn
(zn)

〉 =
∏
i<j

(zi − zj )
2αiαj ,

∑
i

αi = 2α0. (86)

Similarly, the correlator of vertex operators Vα,α(z, z̄) is〈∏
i

Vαi ,αi
(zi, z̄i )

〉
=

∏
i<j

|zi − zj |4αiαj ,
∑

i

αi = 2α0. (87)

While the global behaviour of correlators of vertex operators is affected by the background
charge, their local properties are completely encoded in the short-distance operator product
expansions (OPE)

Vα1(z1)Vα2(z2) = (z1 − z2)
2α1α2Vα1+α2(z2) + · · · , (88)

where the dots stand for subleading terms.
Finally, let us mention that in CFT literature it is customary to label holomorphic charges

and weights by two numbers r, s according to

αr,s = 1

2
(1 − r)α+ +

1

2
(1 − s)α−,

hr,s = αr,s(αr,s − 2α0) = 1

4

[(
r

√
κ

2
− s

2√
κ

)2

−
(√

κ

2
− 2√

κ

)2
]

= (rκ − 4s)2 − (κ − 4)2

16κ
. (89)
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We stress that we use it as a shorthand notation and do not impose any restrictions on r or s.
The holomorphic primary field of weight hr,s is denoted by ψr,s(z). In the notation (84), this
is the field Vαr,s

(z). The corresponding spinless bulk operator V (αr,s )(z, z̄) will be denoted as
ψr,s(z, z̄).

8.3. Coulomb gas CFT in the upper half plane

We now consider modifications to the Coulomb gas description that result when the boson
lives in a bounded region. Due to conformal invariance we may choose the simplest possible
case: the upper half plane H, and most formulae will be written for this case. For basics on
boundary CFT see [19, 63, 64].

First we note that since the boson field ϕ is defined by the orientation of the loops, it
is a pseudoscalar, meaning that it changes sign under parity transformation or reflection in a
boundary (z → z̄ for the upper half plane). This implies that we must impose the Dirichlet
boundary condition

∂lϕ|∂D = 0, (90)

where the derivative is taken along the boundary (for H the boundary is the real axis z = z̄).
Each boundary is then a level line of ϕ, in correspondence with lattice loops.

The Dirichlet boundary condition glues together the holomorphic and antiholomorphic
sectors of the theory in a way that is easiest to describe in terms of the image charges, see,
for example, chapter 11 in [19]. The dependence of correlators of primary fields on the
antiholomorphic coordinates z̄i in the upper half plane can be regarded as the dependence
on holomorphic coordinates z∗

i in the lower half plane, after the parity transformation is
performed. In our case, the parity transformation for the chiral boson is simply

φ̄(z̄) → −φ(z∗),

which gives the following prescription for bulk vertex operators in the upper half plane:

Ve,0(z, z̄) = ei
√

2eϕ(z,z̄) = ei
√

2e[φ(z)+φ̄(z̄)] → ei
√

2eφ(z) e−i
√

2eφ(z∗),

V0,m(z, z̄) = e−√
2mϕ̃(z,z̄) = ei

√
2m[φ(z)−φ̄(z̄)] → ei

√
2mφ(z) ei

√
2mφ(z∗),

(91)
Ve,m(z, z̄) → ei

√
2(m+e)φ(z) ei

√
2(m−e)φ(z∗),

Vα,ᾱ(z, z̄) = ei
√

2αφ(z) ei
√

2ᾱφ̄(z̄) → ei
√

2αφ(z) e−i
√

2ᾱφ(z∗).

The right-hand sides of these equations should be viewed as products of two holomorphic
operators.

This situation can be summarized by saying that under reflection the electric charges
change sign, while the magnetic ones do not. This implies, in particular, that on the boundary
(the real axis) only magnetic operators survive, electric ones being rendered trivial by the
Dirichlet boundary condition. Indeed, as z and z∗ both approach a point x on the real axis, the
bulk operator Ve,m(z, z̄) (with any electric charge e) reduces to

V (2m)(x) = ei2
√

2mφ(x). (92)

Such boundary operator is characterized only by one weight which is the same as the
holomorphic weight h(0, 2m) of a bulk operator. This situation can also be described by
saying that the fusion on the boundary of a holomorphic operator with its image produces a
magnetic boundary operator.
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Figure 13. A bulk magnetic operator V0,m creates a vortex configuration of the field ϕ. The field
changes by 2

√
8πm when going around V0,m.

8.4. Creation of critical curves

As we have seen, in a microscopic description a critical curve starting at a boundary is
created by a change in boundary conditions. In the effective language of CFT such change is
implemented by insertion of a certain operator at a point on the boundary.

Microscopic definition of height function H implies that if we have n critical curves with
the same orientation that start on a boundary at some point, the boundary values of the field
ϕ on the two sides of the point should differ by ±nπR. The curves should be oriented in the
same way to prevent them from reconnecting with each other. For a system on the UHP, n
such curves starting at the origin are then created by the following boundary condition:

ϕ(x) =
{
nπR, x � 0,

0, x > 0.
(93)

The operator creating such a jump in the value of ϕ at x = 0 is a certain magnetic boundary
operator. To find out what it is, we first consider magnetic operators in the bulk.

Note that the insertion of a magnetic operator in the bulk creates a vortex in the field ϕ.
Indeed, the bulk OPE (88) gives

Ve,0(z, z̄)V0,m(z′, z̄′) =
(

z − z′

z̄ − z̄′

)2em

Ve+m(z′)V̄e−m(z̄′) + · · ·

= e4iem arg(z−z′)Ve+m(z′)V̄e−m(z̄′) + · · · .
This means that when z goes around z′, the field ϕ changes by 4

√
2πm and, hence, a

discontinuity line with this jump arises, see figure 13. If this vortex corresponds to a star of
n critical curves joined at the point z′, the change in ϕ should be equal to nπR, and then the
discontinuity is not physical due to the compactification of ϕ. This gives the magnetic charge
of the bulk curve-creating operator:

m =
√

2

8
nR = n

2
√

κ
= −n

4
α−, (94)

where we used the value (75) of the compactification radius and the definition (77) of α−. In
order to be spinless (otherwise the operator would transform under rotations, giving non-trivial
dependence on the winding number of curves), the bulk curve-creating operator should also
have electric charge α0.

We have, therefore, found the holomorphic charge of the bulk curve creation operator to
be

α = α0 − n

4
α− = α0,n/2

in the notation of equation (89). The operator itself is then ψ0,n/2(z, z̄), and its holomorphic
weight is

h0,n/2 = 4n2 − (κ − 4)2

16κ
.
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Figure 14. A boundary magnetic operator is obtained as the boundary limit of the bulk magnetic
operator V0,m/2.

In particular, a single critical curve going through a point z is created by the operator ψ0,1(z, z̄)

with the holomorphic weight h0,1 = (8 − κ)/16. Note that this weight is related to the fractal
dimension of the critical curve by df = 2 − 2h0,1, see [65] for details.

Now we go back to the boundary. According to equation (91), as z approaches a point x
on the real axis, the bulk operator Ve,m(z, z̄) (with any electric charge e) reduces to ei2

√
2mφ(x).

In this process, the two sides of the discontinuity line become parts of the real axis separated
by x (see figure 14). Thus, when we go from one side of x to the other along a semicircle, the
field changes by the same amount as in making a full circle around a bulk magnetic operator.
Then to create the boundary condition (93) and, correspondingly, n critical curves starting at
the origin, we need to insert there the magnetic operator

V (m)(x) = ei
√

2mφ(x),

with the magnetic charge determined by the condition
√

8πm = nπR, which gives

m = 1√
8
nR = n√

κ
= −n

2
α−. (95)

In the notation of equation (89) this is α1,n+1, so the boundary curve-creating operator is
ψ1,n+1(x) with dimension

h1,n+1 = 2n2 + n(4 − κ)

2κ
.

In particular, a single curve is created by the insertion of ψ1,2(x) with the dimension

h1,2 = 6 − κ

2κ
, (96)

which appeared before in the discussion of restriction property of SLE, see equation (54).

9. Harmonic measure of critical curves

Harmonic measure is a useful quantity describing geometry of complicated plane domains
[66, 67]. In the following sections, I define it and the related spectrum of multifractal
exponents, and then show how to compute these exponents for harmonic measure on critical
curves using CFT.

9.1. Definitions of harmonic measure

Let D be a domain (an open connected subset of the complex plane), ∂D its boundary and
z ∈ D.
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Figure 15. A curve covered by discs.

Harmonic measure in D from z, denoted as ωD(z, �) where � ∈ ∂D, is a probability
measure on ∂D, which can be defined as the probability that the standard two-dimensional
Brownian motion Bt that starts at z hits ∂D in a given portion � ⊂ ∂D of the boundary:

ωD(z, �) = Pz[BτD
∈ �].

Here τD is the escape time from D, that is, the first time when the Brownian motion Bt hits
the boundary ∂D.

Harmonic measure ωD(z, �) can also be characterized as the unique harmonic function
(solution of the Laplace’s equation) u(z) in D with the Dirichlet boundary conditions

u(ζ ) = 1, ζ ∈ �, u(ζ ) = 0, ζ /∈ �.

Here we will only be interested in harmonic measure from infinity of the domain D
exterior to a closed curve γ . In this case we will denote it simply by ω(�). Harmonic measure
ω(�) has an electrostatic interpretation. Imagine that D is a charged metallic cluster with the
total charge one. The charge is concentrated on the boundary ∂D. Then ω(�) is the charge
located on the portion � of ∂D.

Harmonic measure is conformally invariant: if f : D → D′ is a conformal map that is
continuous and one-to-one on D ∪ ∂D, then

ωD(z, �) = ωD′(f (z), f (�)).

9.2. Moments of harmonic measure and multifractal spectrum

Consider a closed curve γ . One can cover the curve γ with discs B(zi, r) of radius r centred
at some points zi ∈ γ (zi form a discrete subset of γ ) see figure 15. Let

p(zi, r) = ω(γ ∩ B(zi, r))

be the harmonic measure (from infinity) of the portion of the curve covered by the disc B(zi, r).
Then we consider the moments

Mh =
N∑

i=1

p(zi, r)
h, (97)

where h is a real power and N is the number of discs needed to cover γ . As the radius r gets
smaller and the number of discs N gets larger, these moments scale as

Mh ∼
( r

L

)τ(h)

,
r

L
→ 0. (98)

The size L (diameter) of the curve is used to make the right-hand side of this equation
dimensionless.
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The function τ(h) is called the multifractal spectrum of the curve γ . This function
encodes a lot of information of the curve γ . It also has some simple properties. First of all,
since all 0 < p(zi, r) � 1, the moments Mh are well defined for any real h and the function
τ(h) is non-decreasing: τ(h) � τ(h′) for any h < h′. Secondly, if h = 1, the sum in (97)
is equal to the total charge of the cluster, and therefore does not scale with r, producing the
normalization condition

τ(1) = 0.

Third, if we set h = 0,M0 is simply the number N of discs of radius r necessary to cover the
curve γ , so that by definition the fractal (Hausdorff) dimension of γ is

df = −τ(0).

If the curve γ were smooth, we would have a simple relation τ(h) = h − 1. For a fractal
curve, one defines the anomalous exponents δ(h) by

τ(h) = h − 1 + δ(h).

Also, the generalized multifractal dimensions of a fractal curve γ are defined as D(h) =
τ(h)/(h − 1) (so that D(0) = df ). A non-trivial theorem due to Makarov [68, 69] states that

D(1) = τ ′(1) = 1.

If the curve γ is a member of an ensemble of curves generated in some random way, the
moments Mh become random variables, and we can study their distribution functions. If the
distribution functions are narrow, then the mean moments Mh, where the overline denotes
the ensemble averaging, characterize them well. This is usually the case for |h| that is not
too large. In this case the mean and the typical moments scale in the same way, which is a
statement about self-averaging of the moments. This is what we assume here.

In this situation it is also natural to assume some sort of ergodicity, meaning that the
summation over the points zi in equation (97) for a typical curve is equivalent to the ensemble
average. Hence, we can write

Mh = Np(z0, r)h ∼
( r

L

)τ(0)

p(z0, r)h,

where now the harmonic measure p(z0, r) is evaluated at any point z0 ∈ γ . We define the
local multifractal exponent τ̃ (h) at a point z0 by

p(z0, r)h ∼
( r

L

)τ̃ (h)

. (99)

Similar to τ(h), for a smooth curve we have τ̃ (h) = h, so in general we define the local
anomalous exponents �

(2)
bulk(h) by

τ̃ (h) = h + �
(2)
bulk(h).

The reason for the superscript (2) and the subscript ‘bulk’ will become clear in the next
subsection.

It is obvious from the definitions that τ̃ (0) = �
(2)
bulk(0) = 0, and we deduce simple

ergodicity relations

τ̃ (h) = τ(h) − τ(0), τ (h) = τ̃ (h) − τ̃ (1),

�
(2)
bulk(h) = δ(h) − δ(0), δ(h) = �

(2)
bulk(h) − �

(2)
bulk(1), (100)

df = 1 + �
(2)
bulk(1).
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9.3. Critical curves and uniformizing maps

So far we have considered arbitrary closed curves. An example of such a curve is the exterior
perimeter γ of a critical cluster. One can imagine that the cluster is made of a conducting
material and carries the total unit electric charge. The harmonic measure of any part of γ

is then equal to the electric charge of this part. Since exterior perimeters are always dilute
curves in the sense of section 8.1 (see also discussion of duality around equation (19)), in the
remaining part of this paper we will always assume κ � 4.

The critical clusters and their boundaries appear as members of statistical ensembles,
which is the situation suitable for local multifractal analysis of the previous section. We then
will pick a point of interest z0 on the curve γ and consider a disc of a small radius r � L

centred at z0. It surrounds a small part of γ , and we will study the mean moments of the
harmonic measure p(z0, r) and their scaling as in equation (99).

There are a few generalizations of the simple closed critical curve considered above. First
of all, the curve γ need not be closed or stay away from system boundaries. If γ touches
a boundary, we can supplement it with the image γ̄ (reflected in the boundary) and take the
union γ ∪ γ̄ to be the charged conducting object. The electrostatic definition of p(z0, r) can
be naturally extended to the cases when z0 is the endpoint of n critical curves on the boundary
or in the bulk. If n is even, the latter case can also be seen as n/2 critical curves passing
through z0. In particular, n = 2 corresponds to the situation of a single curve in the bulk
considered above.

When z0 is the endpoint of n critical curves on the boundary or the bulk we define the
corresponding scaling exponents similar to equation (99):

p(z0, r)h ∼ rh+�(n)(h), p(z0, r)h ∼ rh+�
(n)
bulk(h). (101)

In the case of a single curve we will drop the superscript, so, for example, �(h) ≡ �(1)(h) is
the same exponent as obtained in equation (71).

These exponents were first obtained by means of quantum gravity in [2, 3]. For a critical
system with parameter κ , the results read

�(h) = κ − 4 +
√

(κ − 4)2 + 16κh

2κ
=

√
1 − c + 24h − √

1 − c√
25 − c − √

1 − c
, (102)

�(n)(h) = n�(h), (103)

�
(n)
bulk(h) = −h

2
+

(
1

16
+

n − 1

4κ

) (
κ − 4 +

√
(κ − 4)2 + 16κh

)
. (104)

Remarkably, �(h) is the gravitationally dressed dimension h, as given by the KPZ formula
of 2D quantum gravity [4, 70]. Starting in the next section, we will show how to obtain
these exponents in the framework of Coulomb gas CFT, where they are also written in a more
transparent way.

The basic property that allows us to calculate the multifractal exponents using CFT is the
conformal invariance of the harmonic measure. Let us consider a conformal map w(z) of the
exterior of γ to a standard domain. Usually we will choose the upper half plane but sometimes
the exterior of a unit circle is more convenient. We normalize the map so that the point of
interest z0 is mapped onto itself, choose it to be the origin z0 = 0 and demand that at infinity
w(z) = z + o(z). Examples of w(z) for several cases are shown in figure 16.

The scaling of w(z) near the origin is directly related to that of the harmonic measure.
Indeed, since p(0, r) is the charge inside the disc of radius r, by Gauss theorem it is equal to
the flux of the electric field through the boundary of this disc. This, in turn, should scale as
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Figure 16. The uniformizing conformal maps for various cases considered. The dots denote those
points where the electric field is measured.

the circumference of this disc times a typical absolute value of the electric field at the distance
r from the origin, i.e. |w′(r)|. This leads to scaling relation

p(0, r) ∼ r|w′(r)|,
which allows us to rewrite the definitions (101) as

|w′(r)|h ∼ r�(n)(h), |w′(r)|h ∼ r�
(n)
bulk(h). (105)

The relation of the scaling of the harmonic measure and the derivative of a uniformizing
map allows for further generalizations. Namely, we can measure the electric field in more
than one point. Close to the origin n curves divide the plane into n sectors in the bulk and n+ 1
on the boundary. Then we can study objects like

|w′(z1)|h1 · · · |w′(zn+1)|hn+1 (boundary),

|w′(z1)|h1 · · · |w′(zn)|hn (bulk),
(106)

where no two zi’s lie in the same sector. The case when the electric field is not measured in
some sectors is done by setting hi = 0 in them. We will see how to express these quantities
as CFT correlation functions. In the case when zi are all at the distance r from the origin
(zi = r eiθi , θi = const), these averages scale as r�(n)(h1,...,hn+1) and r�

(n)
bulk(h1,...,hn) with the higher

multifractal exponents [3]

�(n)(h1, . . . , hn+1) =
n+1∑
i=1

�(n)(hi) +
κ

2

n+1∑
i<j

�(hi)�(hj ), (107)

�
(n)
bulk(h1, . . . , hn) =

n∑
i=1

�
(n)
bulk(hi) +

κ

4

n∑
i<j

�(hi)�(hj ). (108)

9.4. Derivative expectations and CFT in fluctuating geometry

Here we begin the Coulomb gas derivation of results (102)–(104), (107), (108). It is easiest to
start with a point where a single curve γ connects with the system boundary. We assume that
the critical system occupies the upper half plane, so that the real axis is the boundary.

The partition function Z(0, L), restricted to configurations that contain a curve γ

connecting the points 0 and L, is given by the correlator of two boundary curve-creating
operators, in this case ψ1,2 (see section (8.4)):

Z(0, L)

Z
= 〈ψ1,2(0)ψ1,2(L)〉H,
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where Z is the unrestricted partition function. This correlation function can be computed in two
steps. In the first step we pick a particular realization of the curve γ . Within each realization,
it is the boundary separating two independent systems—the interior and the exterior of γ . In
both these systems we can sum over microscopic degrees of freedom to obtain the partition
functions Zint

γ and Zext
γ , respectively. These are stochastic objects that depend on the fluctuating

geometry of γ . In the second step we average over the ensemble of curves of γ . We thus
obtain

Z(0, L) = Zint
γ Zext

γ .

Next, we insert an additional boundary primary operator Oh(r) of dimension h close to
0 and another one Oh(∞) at infinity. The first one serves as a ‘probe’ of harmonic measure
and the second is necessary to ensure the charge neutrality. We thus consider the correlation
function

〈ψ1,2(0)Oh(r)ψ1,2(L)Oh(∞)〉H. (109)

Since we are only interested in the r-dependence of the correlation function, we can fuse
together the distant primary fields: ψ1,2(L)Oh(∞) → �(∞). We therefore consider the
r-dependence of a three-point function

〈ψ1,2(0)Oh(r)�(∞)〉H, (110)

and show that it yields the statistics of the harmonic measure.
Decomposing the upper half plane into the exterior and the interior of γ as before, we can

rewrite (109) as the average over the fluctuating geometry of γ :

〈Oh(r)Oh(∞)〉ext
γ Zint

γ Zext
γ . (111)

Here the domain of the definition of the correlation function of primary fields is the exterior of
γ . This correlation function is statistically independent of the other two factors in the numerator
of (111) in the limit r � |L|, and we are left with the correlation function 〈Oh(r)Oh(∞)〉ext

γ of
two primary fields of boundary CFT, further averaged over all configurations of the boundary
γ . This average is proportional to the three-point correlation function (110).

Now we apply the conformal transformation w(z) which maps the exterior of γ onto
the upper half plane. Being a primary operator of weight h,Oh(r) transforms as Oh →
|w′(r)|hOh(w(r)), while Oh(∞) does not change because of the normalization of w(z) at
infinity. The transformation relates the correlation function in the exterior of γ to a correlation
function in the upper half plane:

〈Oh(r)Oh(∞)〉ext
γ = |w′(r)|h〈Oh(w(r))Oh(∞)〉H. (112)

The latter does not depend on r and can be neglected.
Summing up, we obtain a scaling relation between the moments of the harmonic measure

near the boundary and correlation functions of primary boundary fields [33]:

|w′(r)|h ∝ 〈Oh(r)ψ1,2(0)�(∞)〉H, r � |L|. (113)

The primary field �(∞) should be chosen in such a way as to render the correlation function
non-zero. The choice is made unique by picking the conformal block which satisfies simple
physical condition �(0) = 0. The r-dependence of the correlation function (113) is found
from the OPE of the fields Oh(r) and ψ1,2(0):

Oh(r)ψ1,2(0) =
∞∑

k=1

r�k�(k)(0). (114)

The exponent �(h) is then identified as the lowest power �k such that 〈�(k)(0)�(∞)〉 �= 0.
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Several remarks are in order. As presented, this argument produces the scaling exponent
�(h) for a single curve on the boundary. But it can be easily modified for studying the scaling
behaviour in all other cases. The case of n curves starting from a point on the boundary
is obtained by simple replacement of the curve-creating operators: ψ1,2 → ψ1,n+1 (see
section (8.4)).

Also, the argument can be repeated for the case of γ connected to the real axis only
at one point (as in SLE). In this case no separation in two systems is necessary. Finally,
nothing compels us measure the electric field on the real axis. We could take instead a bulk
primary field Oh′,h′(z, z̄), where |z| = r . The weight h′ should be chosen such that when the
holomorphic part Oh′(z) is fused with its image Oh′(z∗), the boundary field Oh

(
z+z∗

2

)
with

dimension h is obtained, similar to equation (92). This fusion will be used below.

9.5. Calculation of boundary multifractal exponents

In practice, we view both Oh and ψ1,2 in equation (114) as boundary vertex operators V (αh)

and V (α1,2), see equation (92), with charges

αh = α0 −
√

α2
0 + h, α1,2 = −α−

2
= 1√

κ
.

The leading term in the OPE of these two operators corresponds to simple addition of charges,
see equation (88). Hence, the scaling relation (113) immediately gives the result (102) written
in a compact and suggestive form:

�(h) = 2α1,2αh. (115)

It is interesting that written in this form, the KPZ formula for gravitationally dressed dimensions
amounts to OPE of vertex operators in a simple Coulomb gas CFT, without any quantum
gravity.

An immediate generalization to the statistics of harmonic measure of n curves reaching
the system boundary at the same point is obtained by replacing ψ1,2 → ψ1,n+1. Since α1,n+1 =
−nα−/2 = nα1,2, this immediately leads to

�(n)(h) = 2α1,n+1αh = n�(h),

which is the same as equation (103).
To calculate the higher boundary multifractal exponents, we consider n non-intersecting

critical curves growing from the origin on the boundary (the real axis). It will be convenient
to assume that the curves end somewhere in the bulk thus forming a boundary star (e.g., the
third picture in figure 16). Let w(z) be the conformal map of the exterior of the star to the
upper half plane with the usual normalization w(z) = z + o(z) at z → ∞.

We want to find the scaling of the average

|w′(z1)|h1 · · · |w′(zn+1)|hn+1,

where zi are all close to the origin, no two of them lying in the same sector. The latter
condition will be automatically satisfied in the subsequent calculation due to the following:
if in a particular realization two points zi and zj happen to be in the same sector, then
w(zi) − w(zj ) → 0 as zi − zj → 0, but if they lie in different sectors, w(zi) − w(zj ) remains
large in the same limit.

Since n curves starting from the origin on the boundary are produced by the operator
ψ1,n+1(0), we now consider a boundary CFT correlation function with several ‘probes’ of the
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harmonic measure:

C =
〈

n+1∏
i=1

Oh′
i ,h

′
i
(zi, z̄i )ψ1,n+1(0)�(∞)

〉
H

. (116)

The primary field at infinity represents the fusion of all fields far from the origin and should
be chosen by the charge neutrality condition. As before, this correlation function is equal to
the statistical average of a certain correlator in the fluctuating domain, and we further apply
the uniformizing map w(z) to transform this domain into the UHP:

C =
∏

i

|w′(zi)|2h′
i

〈∏
i

Oh′
i ,h

′
i
(w(zi), w̄(z̄i))�(∞)

〉
H

. (117)

Unlike equation (112), the correlator under the average cannot be neglected since it does
depend on the short scale r, as we shall see soon.

The correlator C can now be evaluated in two ways. As before, we view the primaries
Oh′

i ,h
′
i
(zi, z̄i ) as vertex operators with charges

α′
i = α0 −

√
α2

0 + h′
i . (118)

Then, using the prescription (91), we can rewrite C in equation (116) as a full plane chiral
correlator, which then is evaluated using equation (86):

C =
〈∏

i

Oh′
i
(zi)Oh′

i
(z∗

i )ψ1,n+1(0)�(∞)

〉
∝

∏
i

|zi |2α1,n+1α
′
i

∏
i<j

|zi − zj |4α′
iα

′
j

∏
i,j

(zi − z∗
j )

2α′
iα

′
j .

When all zi are at the same distance r from the origin, the last expression scales as

C ∝ r4α1,n+1
∑

i α′
i+8

∑
i<j α′

iα
′
j +2

∑
i α′

i
2
. (119)

On the other hand, we can evaluate the correlator that appears inside the average in
equation (117) in the same way:〈∏

i

Oh′
i ,h

′
i
(w(zi), w̄(z̄i))�(∞)

〉
H

=
〈∏

i

Oh′
i
(w(zi))Oh′

i
(w∗(zi))�(∞)

〉
∝

∏
i

(w(zi) − w∗(zi))
2α′

i
2
∏
i<j

|w(zi) − w(zj )|4α′
iα

′
j

∏
i �=j

(w(zi) − w(z∗
j ))

2α′
iα

′
j .

We specifically separated the diagonal (i = j) terms, since only they contribute to the necessary
short-distance behaviour. All the other terms ensure that the realizations of the curves in which
any two points zi end up in the same sector are suppressed (since the distances w(zi) − w(zj )

are then small), and we can consider only the case when all w(zi) are far apart. Then the
relevant short-distance dependence of equation (117) is

C ∝
∏

i

|w′(zi)|2h′
i (w(zi) − w∗(zi))

2α′
i
2
.

Insofar as the scaling with r is concerned, we further approximate w(zi) − w∗(zi) ∼
|zi ||w′(zi)| ∼ r|w′(zi)|. This gives

C ∝ r2
∑

i α′
i
2
∏

i

|w′(zi)|2h′
i+2α′

i
2
. (120)
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The exponents in the last factor

2h′
i + 2α′

i
2 = 2α′

i (α
′
i − 2α0) + 2α′

i
2 = 2α′

i (2α′
i − 2α0) = hαi

= hi

are the dimensions of the boundary operators with charges

αi = 2α′
i = α0 −

√
α2

0 + hi,

appearing in the OPE of two chiral operators with charges α′
i .

Finally, comparing equations (119) and (120), we get the result

|w′(z1)|h1 · · · |w′(zn+1)|hn+1 ∝ r�(n)(h1,...,hn+1),

with the higher multifractal exponent

�(n)(h1, . . . , hn+1) = 2α1,n+1

n+1∑
i=1

αi + 2
n+1∑
i<j

αiαj ,

which is formula (107).

9.6. Calculation of bulk multifractal exponents

Calculation of bulk multifractal behaviour is done in much the same way as on the boundary,
so we go straight to the general case of higher bulk exponents.

Let the critical system, occupying the whole complex plane, be restricted to having n
critical curves growing from a single point, in which we place the origin z = 0. We will
assume that z = 0 is the only common point of these curves, since the local results around
these points are unaffected by the curves’ behaviour at large distances. We define the conformal
map w(z) of the exterior of the ‘star’ to the exterior of a unit circle with the normalization
w(z) = z + o(z) at z → ∞.

Close to the origin the curves divide the plane into n sectors. We consider a quantity

|w′(z1)|h1 · · · |w′(zn)|hn,

where zi are points close to the origin, no two of them lying in one sector. As before, if two
points zi and zj happen to be in the same sector, w(zi) − w(zj ) → 0 when zi − zj → 0, but
if they lie in different sectors, w(zi) − w(zj ) remains large.

Since n curves starting from the origin in the bulk are produced by the operator ψ0,n/2(0),

we introduce a CFT correlation function

Cbulk =
〈

n∏
i=1

Oh′
i ,h

′
i
(zi, z̄i )ψ0,n/2(0)�(∞)

〉
, (121)

where, as before, h′
i is the weight of a primary field such that the result of its fusion with its

image has the weight hi :

αi = 2α′
i .

Proceeding exactly as in the boundary case, we first rewrite the correlator Cbulk as the ensemble
average of another correlator in the exterior of the star of critical curves. Then we map that
exterior to the exterior of a unit disc C\D (see the second picture in figure 16):

Cbulk =
∏

i

|w′(zi)|2h′
i

〈∏
i

Oh′
i ,h

′
i
(w(zi), w̄(z̄i))�(∞)

〉
C\D

. (122)
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Next, we evaluate Cbulk as defined in equation (121), using equation (87):

Cbulk =
∏

i

|zi |4α0,n/2α
′
i

∏
i<j

|zi − zj |4α′
iα

′
j ∝ r4α0,n/2

∑
i α′

i+4
∑

i<j α′
iα

′
j .

Alternative evaluation starting from equation (122) gives the same result as equation (120).
Combining the two results for Cbulk, we obtain

|w′(z1)|h1 · · · |w′(zn)|hn ∝ r�
(n)
bulk(h1,...,hn),

with the higher bulk exponent

�
(n)
bulk(h1, . . . , hn) =

n∑
i=1

�
(n)
bulk(hi) +

n∑
i<j

αhi
αhj

,

where

�
(n)
bulk(h) = 2α0,n/2αh − 1

2
α2

h = (2α0,n/2 − α0)αh − h

2

is the scaling exponent of a single |w′(z)|h in the presence of n critical curves in the bulk.
These are the results quoted in equations (104) and (108).

10. Omitted topics: guide to the literature

The current literature on SLE and related subject is already quite large. In this paper, I had to
omit many interesting and important topics. In this section, I simply list the topics and give
appropriate references.

For the overall logic of this paper the biggest omission is the discussion of the relation of
SLE and CFT through the identification of CFT correlators and SLE martingales. This
identification was established and developed by Bauer and Bernard (see review [5] and
references there). We have further developed this correspondence [21], showing that one
can recover all familiar objects of the Coulomb gas CFT, such as bosonic field, its current,
vertex operators, and the stress–energy tensor, by focusing on SLE martingales. Alternative
and independent versions of SLE–CFT correspondence and generalizations were given by
Friedrich, Kalkkinen and Kontsevich, see [51, 52, 71].

Chordal SLE considered in this paper has been generalized in many ways. First of all, one
can define SLE in other simply connected geometries than that of the UHP. The corresponding
processes are known as radial SLE [11, 72], whole plane SLE [65, 73]. All these variants
happen to be closely related [74].

Secondly, one can consider SLE in multiply connected domains including arbitrary
Riemann surfaces [51, 52, 75–79], though there is some amount of arbitrariness involved
in the definition, since in this setting the conformal type of the domain changes during the
evolution (one moves in the moduli space) [80].

Third, there is a way to modify the dynamics of the growth of a random curve by including
certain moving points (‘spectators’) on the boundary of the domain that influence the evolution
by supplying a drift term in the (analogue of) Loewner equation. This generalization is known
as SLEκ,ρ , where ρ stands for a vector of parameters describing the coupling of the ‘spectators’
[48, 56–58, 81–84].

The fourth generalization allows for multiple curves to grow simultaneously. This is
called multiple SLE [85–90].

We can also generalize SLE by dropping the demand that the forcing stochastic function be
continuous, but keeping the requirement of stationary and statistically independent increments.
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This leads to a much broader class of forcing processes including, in particular, the so-called
Lévy processes. This generalization might be a useful description of tree-like stochastic
growth [34, 91].

Still another generalization is to combine the evolution of conformal maps with some
stochastic process in a Lie algebra or some other algebraic structure. This leads to generalized
SLE processes describing CFT with additional symmetries, such as Wess–Zumino models
[92, 93].

Recently, a few papers appeared that used SLE as a tool to probe conformal invariance
in systems that are not described by traditional statistical mechanics models. A remarkable
example is [94] which numerically demonstrated that zero vorticity lines in highly developed
2D turbulence are SLE6 with high accuracy. Similar conclusions were presented for domain
walls in spin glasses [95] and nodal domains of some chaotic maps [96].

Finally, I would like to mention that there is a generalization of Loewner equation that
describes evolving 2D domains which may grow with a specified rate at every point on the
boundary. These are called Loewner chains (see [5, 6] for a review of this enormous field in
relation to SLE) and can describe various non-conformally invariant growth processes such as
Laplacian growth, diffusion-limited aggregation, dielectric breakdown, etc.
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